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Preface

This volume contains the Book of abstracts of the 8th International Conference on Matrix Anal-
ysis and its Applications, MAT TRIAD 2019. The MATTRIAD conferences represent a platform
for researchers in a variety of aspects of matrix analysis and its interdisciplinary applications to
meet and share interests and ideas. The conference topics include matrix and operator theory
and computation, spectral problems, applications of linear algebra in statistics, statistical models,
matrices and graphs as well as combinatorial matrix theory and others. The goal of this event is
to encourage further growth of matrix analysis research including its possible extension to other
�elds and domains.

MAT TRIAD 2019 is a registered as

• satellite meeting of ICIAM 2019, The International Congress on Industrial and Applied
Mathematics, to be held at Valencia, Spain, July 15-19, 2019, http://iciam2019.org/,

• ILAS-Endorsed Meeting, https://www.ilasic.org/misc/meetings.html.

MAT TRIAD 2019 in Liblice in Czech Republic is organized based on the successful concept of
previous MAT TRIAD editions, which are held biannually since 2005. The conference is scheduled
for �ve days with a series of invited lectures by leading experts in their �eld.

The invited speakers are:

• Dario Bini (University of Pisa)

• Mirjam Dür (University of Augsburg)

• Arnold Neumaier (University of Vienna)

• Martin Stoll (Technical University of Chemnitz)

Two of the invited speakers serve as lectures:

• Shmuel Friedland (University of Illinois) - the Hans Schneider ILAS Lecturer

• Zden¥k Strako² (Charles University)

Two recipients of the Young Scientists Awards from MAT TRIAD 2017, which took place in
B¦dlewo, are also invited to give their lecture:

• Álvaro Barreras (Universidad Internacional de La Rioja)

• Ryo Tabata (National Institute of Technology)

http://iciam2019.org/
https://www.ilasic.org/misc/meetings.html
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There are four special sessions organized:

• Total positivity

organiser: Mohammad Adm, Palestine Polytechnic University, Hebron & Jürgen Garlo�,
University of Applied Sciences and University of Konstanz

• Tropical matrix algebra and its applications

organiser: Aljo²a Peperko, University of Ljubljana, Slovenia & Sergei Sergeev, University of
Birmingham, UK

• Recent developments of veri�ed numerical computations

organizer: Takeshi Ogita, Tokyo Woman's Christian University & Siegfried M. Rump, Ham-
burg University of Technology

• Interval matrices

organiser: Milan Hladík, Charles University, Prague

First, we wish to thank International Linear Algebra Society and RSJ Foundation, to make
the conference possible as well as other supporters and sponsors. We thank the members of
scienti�c committee for their work and feedback on the event and to members of local organizing
committee for their cooperation and help with necessary organizational tasks. We want to thank
all invited speakers for accepting invitations and preparations of their presentations as well as all
participants of the conference to make the event possible. We wish them rich time and fruitful
discussions during MAT TRIAD 2019 in Liblice.

Miroslav Rozloºník, Milan Hladík

The �nal program is available at https://mattriad.math.cas.cz/

https://mattriad.math.cas.cz/
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Tridiagonal inverses of tridiagonal
M-matrices and related
pentadiagonal matrices

Álvaro Barreras1 and Juan Manuel Peña2

1 Universidad Internacional de La Rioja,
Av. de la Paz, 137, 26006, Logroño, Spain

alvaro.barreras@unir.net
2 Universidad de Zaragoza, Dept. Applied Mathematics,

Pedro Cerbuna, 12, 50009, Zaragoza, Spain

jmpena@unizar.es

Keywords: tridiagonal, M-matrix, tridiagonal inverse, pentadiagonal

Abstract

A matrix A = (aij)1≤i,j≤n is tridiagonal if |i − j| > 1 implies that
aij = 0 and it is pentadiagonal if |i− j| > 2 implies that aij = 0. Let
us recall that a matrix A is a nonsingular M-matrix if it has nonpositive
off-diagonal entries and its inverse has nonnegative entries, A−1 ≥ 0
(cf. [4], [2], [3]). Let us also recall that a matrix is called totally positive
if all its minors are nonnegative (cf. [1]).

Imam provided some partial results on tridiagonal matrices whose
inverse is M-matrix in [5]. On the other hand, the inverse of a nonsin-
gular tridiagonal M-matrix is analyzed in [6].

In this talk, a necessary and sufficient condition in order to guaran-
tee that the inverse of a tridiagonal M-matrix is tridiagonal is provided.
This condition is provided in terms of the zero pattern of A. A suf-
ficient condition in order to assure that the inverse of a nonsingular
totally positive matrix is a nonsingular M-matrix is also presented by
using the mentioned result.

Then, we provide a necessary condition in order to guarantee that
the inverse of a pentadiaonal M-matrix is also pentadiagonal.

MAT TRIAD 2019 (Invited talks)
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Finally, we include some examples that illustrate the necessity of
the conditions for that results.

Acknowledgement

This work has been partially supported by the Spanish Research Grant
MTM2015-65433-P (MINECO/FEDER), by Gobierno de Aragón and
Fondo Social Europeo.
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Solving matrix equations encountered
in stochastic processes:
an algorithmic analysis

Dario A. Bini1

1 University of Pisa, Department of Mathematics,
Largo Bruno Pontecorvo 5, 56127 Pisa, Italy

dario.bini@unipi.it

Keywords: matrix equations, infinite matrices, Toeplitz matrices,
queueing models, Markov chains

Abstract

Many queuing problems are modeled by Markov chains with infinitely
many states. The computation of the invariant probability measure,
performed by means of matrix-geometric techniques [7], relies on the
solution of matrix equations expressed in terms of a matrix polynomial
or of a matrix power series like, for instance, in the QBD and in the
M/G/1 processes [3], [4], [7]. Moreover, in several important cases from
the applications, the coefficients of these matrix polynomials / power
series are infinite matrices having a Toeplitz-like structure [5], [6]. The
demand from applications is to provide solution algorithms which are
highly effective both in terms of low computational cost and of numer-
ical reliability and which can manage with the infinite nature of the
problem.

In this talk we provide an overview of this kind of equations and
their motivations, then we address some theoretical and computational
issues encountered in the analysis of this class of problems.

This work continues the analysis performed in [1], [2].
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Copositive optimization and completely
positive matrix factorization

Mirjam Dür1

1 University of Augsburg, Department of Mathematics,
86135 Augsburg, Germany

mirjam.duer@math.uni-augsburg.de

Keywords: copositive and completely positive matrices, factorization
of matrices

A copositive optimization problem is a problem in matrix variables
with a constraint which requires that the matrix be in the cone of
copositive symmetric n× n matrices. This cone is defined as

COPn := {A ∈ Rn×n | A = AT , and xTAx ≥ 0 for all x ≥ 0}.

Its dual cone which appears in the dual optimization problem is the
cone of completely positive matrices:

CPn := {A ∈ Rn×n | A = BBT where B ∈ Rn×r, B ≥ 0}
= conv{xxT | x ∈ Rn

+}.

These cones have received considerable attention in the mathematical
optimization community because it has turned out that many non-
convex quadratic optimization problems can be formulated as linear
problems over these cones. This was first shown by Bomze et al. [1]
for the so-called standard quadratic optimization problem of finding
the minimum of a (not necessarily convex) quadratic function over the
standard simplex: Let Q ∈ Rn×n be a symmetric matrix, let e ∈ Rn

denote the all-ones vector, and consider the problem

min xTQx
st. eTx = 1,

x ∈ Rn
+.

(StQP)
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It was shown by Bomze et al. [1] that (StQP) can be equivalently
formulated as

min 〈Q,X〉
st. 〈E,X〉 = 1,

X ∈ CPn

(1)

where E = eeT denotes the all ones matrix in Rn×n. The dual of (1)
is the copositive optimization problem

max y
st. Q− yE ∈ COPn,

y ∈ R,
(2)

and it can be shown that the optimal values of (1) and (2) are equal.
The reformulation of (StQP) as (1) or (2) is remarkable since by this

approach, a nonconvex optimization problem is reformulated equiva-
lently as a convex problem. The complexity of the original problem
is entirely shifted into the cone constraint. The approach was later
extended and it was shown that many other nonconvex quadratic op-
timization problems and also many combinatorial problems like the
maximum clique problem and others can be reformulated as linear op-
timization problems over CPn or COPn. More details can be found
in [2].

The equivalence between (StQP) and problem (1) is understood
in the following sense: if x∗ is an optimal solution of (StQP), then
the matrix x∗(x∗)T is an optimal solution of (1). Conversely, if X∗ is

an optimal solution of (1), then we can write X∗ =
∑k

i=1 xix
T
i with

xi ∈ Rn
+ for all i, and an appropriately scaled multiple of each xi is

then an optimal solution of (StQP).
For this reason, it is necessary to be able to factorize a given

X∗ ∈ CPn as X∗ =
∑k

i=1 xix
T
i with xi ∈ Rn

+ for all i. In [3], a method
was proposed to solve this factorization problem: we reformulated the
factorization problem as a nonconvex feasibility problem and devel-
oped a solution method based on alternating projections. A local
convergence result can be shown for this algorithm, and numerical
experiments show that the algorithm performs very well in practice.
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The Collatz-Wielandt quotient for pairs
of nonnegative operators

Shmuel Friedland1

1 Department of Mathematics, Statistics and Computer Science
University of Illinois at Chicago

Chicago, Illinois 60607-7045, USA

friedlan@uic.edu

Keywords: Perron-Frobenius theory, Collatz-Wielandt quotient, com-
pletely positive operators, commodity pricing, wireless networks, quan-
tum information theory.

Abstract

In these two lectures we consider the Collatz-Wielandt quotient for
a pair of nonnegative operators A,B that map a given pointed gener-
ating cone in the first space into a given pointed generating cone in
the second space [3]. In the case the two spaces and the two cones are
identical, and B is the identity operator this quotient is the spectral
radius of A. In some applications, as commodity pricing, power con-
trol in wireless networks and quantum information theory, one needs to
deal with the Collatz-Wielandt quotient for two nonnegative operators.
In this paper we treat the two important cases: a pair of rectangular
nonnegative matrices and a pair completely positive operators. We
give a characterization of minimal optimal solutions and polynomially
computable bounds on the Collatz-Wielandt quotient.

Outline of the two lectures

In the first lecture and the beginning of the second lecture we will
cover the following topics: We will define the Collatz-Wielandt type
infmax problem for a pair of nonnegative operators A,B : RN1 → RN2,
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with respect to closed pointed generating cones Ki ⊂ RNi for i = 1, 2:
AK1, BK1 ⊆ K2. Denote by Ko

i the interior of Ki. Let

r(A,B, x) = inf{t, t ∈ [0,∞], tBx−Ax ∈ K2} for x ∈ K1 \{0}. (1)

ρ(A,B) = inf{r(A,B, x), x ∈ Ko
1}. (2)

In general, ρ(A,B) can have any value in [0,∞]. We call ρ(A,B) the
Collatz-Wielandt quotient.

We will discuss the Collatz-Wielandt quotient for a pair of rectan-
gular nonnegative matrices A,B ∈ Rm×n

+ , i.e. :

ρ(A,B) := inf
x=(x1,...,xn)>>0

max
i∈[m]

(Ax)i
(Bx)i

. (3)

We will give characterizations of the optimal x and the polynomial
computability of ρ(A,B) in this case. We will bring an application to
the wireless networks as discussed in [1], [2].

In the second part of lecture two we will discuss Collatz-Wielandt
quotient of pairs of completely positive operators, which are frequently
appear in quantum information theory as quantum channels. These are
special positive operators on the cone of positive semidefinite hermitian
matrices.
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Confidence intervals for the solutions of linear least squares prob-
lems are traditionally given in terms of the inverse of the coefficient
matrix of the normal equations.

In the large-scale case it is not feasible to compute the inverse
explicitly. We show how one can nevertheless compute meaningful
approximations to these confidence intervals.
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From PDEs to data science:
an adventure with the graph Laplacian

Martin Stoll1

1 TU Chemnitz,

Reichenhainer Str. 41, 11800, Chemnitz, Germany

In this talk we briefly review some basic PDE models that are used
to model phase separation in materials science. They have since be-
come important tools in image processing and over the last years semi-
supervised learning strategies could be implemented with these PDEs
at the core. The main ingredient is the graph Laplacian that stems
from a graph representation of the data. This matrix is large and typi-
cally dense. We illustrate some of its crucial features and show how to
efficiently work with the graph Laplacian. In particular, we need some
of its eigenvectors and for this the Lanczos process needs to be imple-
mented efficiently. Here, we suggest the use of the NFFT method for
evaluating the matrix vector products without even fully constructing
the matrix. We illustrate the performance on several examples.
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Operator preconditioning, spectral
information and convergence behavior
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Introduction

Krylov subspace methods such as the method of conjugate gra-
dients (CG) were developed as tools for solving linear problems with
finite matrices but almost immediately they were also reformulated for
operators at infinite dimensional Hilbert spaces. They are important
as computational methods. They are equally important as fascinating
mathematical objects linked with classical approximation theory and
functional analysis that provoke questions going across the fields [2].

The structure of lectures

This contribution will combine historical perspectives with some re-
cent developments concerning the role of the spectral information in
the numerical solution of elliptic PDEs. The first lecture will attempt
to use the infinite dimensional view in parallel with the standard fi-
nite dimensional matrix descriptions to show similarities, differences,
subtleties and consequences that affect developments in the area. The
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second lecture will examine arguments used in analysis and in justifica-
tion of preconditioning techniques in practical computations, including
the effects of rounding errors [1], [3].
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Introduction

An immanant is a matrix function associated with the representation
of the symmetric group. The permanent and determinant are the spe-
cial cases where the trivial and alternating representations are applied
respectively.

The theory of the symmetric functions has been developed with the
background of the representation theory. One of the most important
basis for the space of symmetric functions consists of Schur functions,
indexed by partitions of positive integers or Young diagrams. The
product of two Schur functions is described in a combinatorial way,
called the Littlewood-Richardson rule. In [3], it is shown that im-
manants also have expansions in terms of matrix minors in the same
rule.

In this talk, we review the classical inequality problem about im-
manants which originates from Schur [4]. The permanental dominance
conjecture [1], an analogue of Schur’s result, is still open, although
much work on it was done in 1970–1980’s. We suggest an approach
to sharper bounds for these inequalities. We discuss some limiting
behavior of immanants and its related topics.

We also consider immanant identities corresponding to another
type of multiplication of Schur functions defined through invariant
matrices. Irreducible invariant matrices are also indexed by Young
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diagrams, and are generalizations of induced and compound matri-
ces. We observe the contribution of immanants to the representations
of the general linear group based on Littlewood’s work [2] and some
combinatorial aspects such as the Littlewood-Richardson rule.
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SPECIAL SESSION

Total positivity

Organisers: Mohammad Adm1, Jürgen Garlo�2

1 Palestine Polytechnic University, Hebron
2 University of Applied Sciences and University of Konstanz

The concept of total positivity is rooted in classical mathematics where it can be traced back
to works of Schoenberg on variation diminishing properties and of Gantmacher and Krein on small
oscillations of mechanical systems. Since then the class of totally positive matrices and operators
proved to be relevant in such a wide range of applications that over the years many distinct
approaches to total positivity, amenable to a particular notion, have arisen and advocated by
many prominent mathematicians. This area is, however, not just a historically signi�cant subject
in mathematics, but the one that continues to produce important advances and spawn worth-wile
applications. This is re�ected by the topics which will be covered by the speakers of the Special
Session, viz. the study of classes of matrices related to total positivity and more generally, to sign
regularity, accurate computations based on bidiagonalization, inverse eigenvalue problems, and
the location of the roots of polynomials.
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On the spectral properties of nonsingular
matrices that are strictly sign-regular

for some order with applications to totally
positive discrete-time systems
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Introduction

A matrix is called strictly sign-regular of order k (denoted by SSRk)
if all its k × k minors are non-zero and have the same sign. For ex-
ample, totally positive matrices, i.e., matrices with all minors positive,
are SSRk for all k, see, e.g., [2],[3]. Another important subclass are
those matrices that are SSRk for all odd k which appear in totally
positive discrete-time systems.

Basic properties

Matrices that are SSRk for all odd k have interesting sign variation
diminishing properties, and it has been recently shown in [4] that they
play an important role in the analysis of certain nonlinear cooperative
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dynamical systems. In fact, the spectral properties of such matrices
are not studied before.

Main results

In this talk, the spectral properties of nonsingular matrices that
are SSRk for a specific value k are presented. One of the results is that
the product of the first k eigenvalues is real and of the same sign as
the k× k minors, and that linear combinations of certain eigenvectors
have specific sign patterns. It is then shown how known results for
matrices that are SSRk for several values of k can be derived from
these spectral properties. Using these theoretical results, the notion of
a totally positive discrete-time system (TPDTS) is introduced. This
may be regarded as the discrete-time analogue of the important notion
of a totally positive differential system. It is shown that TPDTSs
entrain to periodic excitations.
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Introduction

Solving inverse eigenvalue problems (IEPs) is an important subject in
numerical linear algebra. Chu and Golub gave a comprehensive review
for IEPs [1]. The problem to construct a matrix having prescribed
eigenvalues is one of IEPs and called the structured IEP. A matrix A
whose minors are all nonnnegative is called totally nonnegative (TN),
and an irreducible and invertible TN matrix an oscillatory matrix [2].
In this talk, we consider an IEP for oscillatory matrices with a specific
shape and characteristics from the view point of orthogonal polynomi-
als.

Main result

We consider Laurent biorthogonal polynomials (LBPs) P
(t)
n (z) with

respect to moments f
(t)
i = ft+i that satisfy a three-term recursion

relation [4]

P
(t)
0 (z) = 1, P

(t)
n+1(z) = (z − q(t)n )P (t)

n − e(t)n zP (t)
n (z), n = 0, 1, . . . .

(1)
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From (1), we obtain a relation among coefficients

q(t+1)
n e(t)n = q

(t)
n−1e

(t+1)
n , q(t+1)

n + e(t+1)
n = q(t)n + e

(t)
n+1. (2)

By using the equivalence between LBPs and orthgonal Laurent poly-
nomials (OLPs) [3], we can associate (2) with an eigenproblem for
a pentadiagonal matrix A(t) called Laurent-Jacobi matrix.

Our main result is as follows: Let λ1, λ2, . . . , λm be positive dis-
tinct. Let c1, c2, . . . , cm be appropriate nonzero constants. We deter-
mine a sequence {ft}t=0,1,... by ft = c1λ

t
1 + c2λ

t
2 + · · ·+ cmλ

t
m. Then, we

can construct an oscillatory Lanrent-Jacobi matrix A(t) with prescriced

eigenvalues λ1, λ2, . . . , λm by using (2) with e
(t)
0 ≡ 0 and q

(t)
1 = ft+1/ft.
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Totally nonnegative matrices, i.e., matrices having all their minors
nonnegative, and matrix intervals with respect to the checkerboard
partial order are considered. In [1] it is proven that if the two bound
matrices of such a matrix interval are totally nonnegative and nonsin-
gular, then all matrices from this interval are also totally nonnegative
and nonsingular. In our talk, we relax the nonsingularity assumption
by assuming the linear independence of certain rows and columns of
the two bound matrices.
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Total positivity preservers
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Abstract

We classify the entrywise functions that preserve various sets of totally
positive matrices of a fixed dimension. These include (a) rectangular
matrices, (b) symmetric matrices, and (c) Hankel matrices. The last
of these sets (c) is a cone and we explain why its endomorphisms are
closely connected to those of positive semidefiniteness, with precise
classifications. The first two sets (a), (b) are not cones, and the only
functions that preserve them are necessarily powers. In particular, the
dimension-free preservers of total positivity are precisely the dilations.
(Based on joint works with Alexander Belton, Dominique Guillot, and
Mihai Putinar; and with Terence Tao.)
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Introduction

We present new algorithms for computing all eigenvalues and zero Jor-
dan blocks (i.e., ones corresponding to eigenvalue 0) of sign-regular ma-
trices of signature {1,−1, 1,−1, . . .} to high relative accuracy in float-
ing point arithmetic. These matrices can also be described as totally
nonnegative with columns in reversed order. These results generalize
our earlier ones for the nonsingular case [2].

Definitions

Matrices with all minors nonnegative are called totally nonnegative,
and matrices whose minors of a given size have the same sign are called
sign regular. Sign regular matrices of signature {1,−1, 1,−1, . . .} are
have positive entries, negative 2 × 2 minors, and so on. They can be
described as “totally nonnegative” with columns in reverse order.

New results

Computing the eigenvalues of a matrix in floating point arithmetic
using conventional algorithms (e.g., LAPACK) can cause the smallest
eigenvalues and the Jordan structure to be lost to roundoff. In contrast,
our new algorithm computes all eigenvalues of the above sign regular
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matrices to high relative accuracy in floating point arithmetic. The
zero eigenvalues and zero Jordan blocks are computed exactly.

The sign regular matrix be represented as a product of bidiagonals
and the reverse identity. This merely means that its structure must
be explicitly revealed. Formulas for the bidiagonal decompositions of
the classical sign regular matrices (e.g., column-reversed Vandermonde,
Cauchy, etc.) are readily available.

The algorithm reduces the sign regular matrix to a symmetric anti-
bidiagonal matrix with the same eigenvalues. The eigenvalues of the
later are computed using the result of Demmel and Kahan [3] (and
attaching the signs, which are known from theory).

Our algorithm is subtraction-free, which guarantees the high rela-
tive accuracy. The only way that a zero eigenvalue (as well as any zero
quantity) is computed to high relative accuracy is if it is computed
exactly as evidenced by the inequality

|λ− λ̂| ≤ O(ε)|λi|.
The sizes of the zero Jordan blocks are deduced from the ranks of

the powers of the original matrix, which are computed exactly.
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The problem of establishing D-stability, i.e. spectra localization
inside a prescribed subregion D ⊂ C is of major importance in the
theory of control. In most cases, we are interested in robust D-stability,
i.e. when the property of D-stability is preserved under certain pertur-
bations of the initial matrix (polynomial).

In this talk, we consider totally positive matrices from the following
different points of view:

- as a class of matrices, whose spectral properties are preserved with
respect to some prescribed types of perturbations;

- as a class of matrices, which describes the type of uncertainty.

We consider spectra localization of totally positive matrices with
respect to different stability regions. We study totally positive matri-
ces as well as their subclasses (e.g. Jacobi and Vandermonde matrices),
whose spectra localization is preserved under perturbations of differ-
ent types. In addition, we consider relations between totally positive
matrices, Kotelyansky matrices, D- and diagonally stable matrices.
We study generalizations of totally positive matrices (e.g. J-sign-
symmetric matrices), that have real spectra. Based on the results
of [1], D-positivity and D-reality of matrix spectra are studied.
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Abstract

One of the properties of h-Bernstein bases (a generalization of the
Bernstein basis for the space of polynomials of degree less than or
equal to n), analyzed in [3], is the variation diminishing property, an
important issue in the field of CAGD. This property is related to the
fact that h-Bernstein bases are totally positive, which means that the
corresponding collocation matrices (the h-Bernstein-Vandermonde ma-
trices) are totally positive.

The aim of this talk is to present an algorithm for the accurate com-
putation of the bidiagonal decomposition of h-Bernstein-Vandermonde
matrices, and then to use that bidiagonal decomposition as the start-
ing point for the solution of several linear algebra problems with these
matrices, by using some of the algorithms presented in [1]. The partic-
ular case where h = 0 corresponds to the Bernstein basis, a case which
has been studied in detail in [2].
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Universidad de Zaragoza, 50009, Zaragoza, Spain

2 jmpena@unizar.es

Keywords: totally positive matrices, high relative accuracy, bidiago-
nal factorization

Introduction

The bidiagonal decomposition of a nonsingular totally positive ma-
trix provides a natural parametrization to perform algebraic operations
to high relative accuracy. In fact, if the bidiagonal decomposition is
known with high relative accuracy, then the computation of the inverse
of the matrix, of its eigenvalues or of its singular values can be also
performed with high relative accuracy. However, the obtention of the
bidiagonal decomposition to high relative accuracy has been got, up to
now, only for a few subclasses of nonsingular totally positive matrices.
Recent advances on this subject are presented in this talk. In partic-
ular, we show new subclasses of nonsingular totally positive matrices,
relevant in several fields, for which the bidiagonal decomposition has
been obtained with high relative accuracy.
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Abstract

A sequences of real numbers {an}∞n=0 is called a totally positive se-
quence, or a Pólya frequency sequence if the Toeplitz matrix

T =




a0 a1 a2 a3 . . .
0 a0 a1 a2 . . .
0 0 a0 a1 . . .
0 0 0 a0 . . .
...

...
...

... . . .




is totally nonnegative (that is all minors of the matrix are nonnega-

tive). In this and only this case [1]-[2], the series
∞∑
n=0

anz
n converges to

a function of the following form:

R(z) = Czjeηz ·

M1∏
µ=1

(
1 + z

αµ

)kµ

N1∏
ν=1

(
1 − z

βν

)lν , (1)
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where C > 0, j ∈ N, η, αµ, βν are positive and kµ, lν are positive inte-
gers for all µ, ν. In (1), the numbers of distinct negative zeros M1 and
poles M2 can be finite or infinite, which we denote using the inequal-
ity 0 6 M1,M2 6 ∞.

However, the matrix T cannot help to specify the exact number
of poles or/and zeroes of the function R(z). In the talk, we present

another matrix formed with the coefficients of the series
∞∑
n=0

anz
n which

allows to determine whether the function R(z) (the sum of the series)
is an entire or meromorphic function.
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Tropical matrix algebra is a vibrant new area in mathematics, which has been developing
since 1960's. The motivations of tropical matrix algebra are both applied (in particular, theory of
optimal scheduling and discrete event systems) and pure, as there is a correspondence principle
(Litvinov and Maslov) saying that every useful result and construction of traditional mathemat-
ics over �elds might have a useful tropical counterpart. Therefore, tropical mathematics events
traditionally bring together mathematicians of various backgrounds, both pure and applied. The
emphasis of this workshop will be on new useful constructions in tropical matrix algebra, and
possibly also on the in�uence of tropical geometry.
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Introduction

Rowen introduced in [4] a notion of algebraic structure, called sys-
tems, which unifies symmetrized tropical semirings [1], supertropical
semirings [3], and hyperfields [5]. We study here linear algebra and
convexity over systems [2].

Basic properties

Several notions of convexity are defined over systems, depending on
the way equalities are weakened, for instance by replacing them by
a balance equation or a surpassing relation. They can sometimes be
related to the image of convex sets by generalized notions of valuations
over the field of Puiseux series.
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Main results

We discuss the relation between matrix ranks and convexity notions,
like the Helly and Carathéodory numbers. We also compute upper and
lower bounds for Helly numbers over various systems.
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We consider linear vector inequalities defined in the framework of
a linearly ordered tropical semifield (a semiring with idempotent addi-
tion and invertible multiplication). The problem is to solve two-sided
inequalities, which have an unknown vector included in both sides,
each taking the form of a given matrix multiplied by this unknown
vector. Observing that the set of solutions is closed under vector ad-
dition and scalar multiplication, we reduce the problem to finding a
matrix whose columns generate the entire solution set.

We represent the solution as a family of subsets, each defined by
a matrix that is obtained from the given matrices by using a matrix
sparsification technique. The technique exploits sparsified matrices
to derive a series of new inequalities, which admit a direct solution
in the form of matrices that generate their solutions. We describe a
backtracking procedure that reduces the brute-force search of sparsified
matrices by skipping those, which cannot provide solutions, and thus
offers an economical way to obtain all subsets in the family. The
columns in the generating matrices for subsets are combined together
to form a matrix, which is further reduced to have only columns that
constitute a minimal generating system of the solution. We use the
reduced matrix to represent a complete exact solution of the two-sided
inequality under consideration in a compact vector form.

We illustrate the results with numerical examples. Extension of the
approach to solve two-sided equations is also discussed.
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Introduction and overview

In the study of the joint spectral radius (JSR) in conventional algebra,
the concepts of extremal and Barabanov norms play an important
role. A classical result of Barabanov states that if the set Ψ ⊆ Rn×n

is compact and has no non-trivial invariant subspace (representation-
theoretic irreducible), then it admits a Barabanov norm.

In this talk, we shall first discuss results on the existence of an ex-
tremal norm for a compact set Ψ of nonnegative matrices under a com-
binatorial requirement of irreducibility, before describing correspond-
ing results for inclusions defined over the max algebra. In particular,
we shall show that under an appropriate definition of irreducibility,
a Barabanov norm always exists for such inclusions and provide an
explicit characterisation of such a norm.

A set Ψ has the finiteness property if there exists some product P
in the associated semigroup Σ(Ψ) with ρ(P ) = ρ(Ψ)k where k is the
length of the product P , ρ(P ) its spectral radius, and ρ(Ψ) the JSR.
It has been known for some time that the finiteness property does not
hold for a general finite set of matrices over the conventional algebra.
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In contrast, it is not hard to show that it does hold over the max
algebra. A spectrum maximising product is a matrix P in Σ(Ψ) with
ρ(P ) = ρ(Ψ)k. We will describe a number of results on the relationship
between the eigencones and subeigencones of such products P and
those of the matrix S =

⊕
A∈ΨA. We will also briefly discuss a max

algebraic analogue of a question posed by I. D. Morris concerning the
uniqueness of Barabanov norms.

Recently, the concept of opacity has been extended from the set-
ting of discrete event systems (DES) to continuous-state linear sys-
tems in [3]. For DES, results characterising the relationship between
detectability, observability and opacity have been derived. In the fi-
nal part of the talk, we will discuss appropriate definitions of opacity,
detectability and observability for max algebraic systems and present
some preliminary results clarifying the relationship between these con-
cepts.
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Abstract

Tropical matrices are matrices over the semiring T := (R ∪ {−∞},
max,+). The set of such n × n matrices form the multiplicative
monoid Mn(T).

Semigroup identities are linked to growth of semigroups; although
the links are more intricate than in the case of groups. Existence of
a semigroup identity for matrices can be understood as a pair of words
indistinguishable by any weighted automaton.

Semigroup identities have been found for some submonoids
of Mn(T), including triangular matrices, as well as for M2(T) and
M3(T). In [3], we have proved the existence of identities for all n× n
tropical matrices, for any n, to wit:

Theorem 1. The monoid Mn(T) satisfies a nontrivial semigroup
identity for every n ∈ N. The length of this identity grows with n
as eCn2+o(n2) for some C ≤ 1/2 + ln(2).

The proof, presented in [3], is inductive and deeply relies on the
relationships between the non-coincide notions of ranks for tropical
matrices (see [1] for details). It combines three main ingredients:
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1. A lemma from [5] which reduces the problem to matrices having
maximal factor rank;

2. An adapted theorem from [2] which deals with matrices having
maximal tropical rank, using identities of triangular matrices;

3. New relationships between the factor rank of a large enough power
of a matrix and the tropical rank of the original matrix.

The proof of the latter is based on the so-called weak CSR expan-
sion – a method developed by T. Nowak, S. Sergeev, and the second
author in [4]. The main results in this part are the following.

Theorem 2. Any A ∈ Mn(T) satisfies rkfc(A
t) ≤ rktr(A) for any

t ≥ (n− 1)2 + 1.

Proposition 3. If A ∈ Mn(T) satisfies rktr(A
n) < n, with n =

lcm (1, · · · , n), then rkfc(A
tn) < n for any t ≥ 3n− 2.
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Stéphane Gaubert1 and Adi Niv2
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Introduction

The combinatorial properties of minors of the weight matrix associated
with a planar network are well known [2]. These were studied by Karlin
and McGregor back in the 50’s (see [6]). Some applications were given
by Gessel and Viennot in [4], [5]. In this context, totally nonnegative
matrices arise as weight matrices of planar networks. We show that, as
consequence of earlier results, the same is true in the tropical setting.

Basic properties

This work is a direct extension of [3], which discussed the tropical ana-
logues of totally positive and totally nonnegative matrices, inspired
by [1]. These arise when considering the images by the nonarchimedean
valuation of the corresponding classes of matrices over a real nonar-
chimedean valued field, like the field of real Puiseux series. It has
been shown that the nonarchimedean valuation sends the totally pos-
itive matrices precisely to the Monge matrices. That led to explicit
polyhedral representations of the tropical analogues of totally positive
and totally nonnegative matrices. Also, tropical totally nonnegative
matrices with a finite permanent shown to be factorized in terms of
elementary matrices. The eigenvalues of tropical totally nonnegative
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matrices were determined and related with the eigenvalues of totally
nonnegative matrices over nonarchimedean fields.

Main results

Inspired by [2], we study the relation between planar networks and
total positivity. More precisely, we show that every totally connected
planar network with real weights has a tropical totally nonnegative
weight matrix. In particular, we provide an explicit condition for
the weight matrix to be tropical totally positive. Moreover, for ev-
ery square tropical totally nonnegative matrix A there exists a planar
network such that A is its weight matrix. In particular, if A is tropical
totally positive, then the planar network is unique.

Acknowledgement

The first author has been partially supported by PGMO, EDF and
ANR. The second author was sported by the French Chateaubriand
grant and INRIA postdoctoral fellowship. We thank Gleb Koshevoy for
suggesting the present topic. We also thank Charles Johnson, Shaun
Fallat and Benjamin Schröter for helpful comments.
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Introduction

We will present results on Bonsall’s and lower cone spectral radius of
positively homogeneous, bounded or Lipschitz and suprema preserving
mapping on max cones in normed vector lattices and its approximate
point spectrum.

Our results apply to max type kernel operators. In the special case
of (infinite) matrices over max algebra we obtain additional results.

Basic notations

Let T : C → C be a positively homogeneous, Lipschitz mapping that
preserves finite suprema, where C ⊂ X+ is max-cone in (a possibly
infinite dimensional) normed vector lattice X (a normed space, which
suitably respects the order).
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Let r(T ), d(T ), rx(T ), σap(T ) denote the Bonsall cone spectral
radius, lower cone spectral radius, local spectral radius at x ∈ C and
approximate point spectral radius, respectively.

Main results

In particular, we show that under suitable assumptions r(T ), d(T ),
rx(T ) for x 6= 0 are included in σap(T ). We also show that the max
polynomial spectral mapping theorem holds for σap(T ).

We apply our results to max type integral operators and show ad-
ditional results in the special case of of (infinite) matrices over max
algebra.
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This talk is based on [1]. We assume only the axiomatic system of
Zermelo-Fraenkel with no use of the Axiom of Choice.
The symmetrized max-plus algebra S is considered with an embed-

ding, called the canonical embedding, into C with two basic metrics:
the Euclidean metric de and the inner metric din, both inducing the
same topology (other realizations of S as subsets of C are possible).
It appears that ⊗ is continuous and ⊕ is only almost everywhere

continuous as a mapping from S× S to S.

Question 1. What is the most natural topological structure on S?

We produce the Euclidean metric De and the inner metric Din

on Sn and consider traditional segments, geometric segments and semi-
module segments between points as well as respective convexities (Sn is
seen as a semimodule over Rmax). A geometric segment in S is the in-
tersection of all connected subsets of S that contain both ends of the
segment. A geometric segment in Sn is decomposable into no more
than n + 1 traditional segments. Traditionally convex and geometri-
cally convex sets in Sn are connected.
On the other hand, semimodule segments in S can have up to 3 con-

nected components and need not be closed. A semimodule segment
in S2 can have 5 connected components.
Semimodule segments in S are not necessarily Chebyshev sets. Non-

empty closed semimodule convex sets in S can admit up to 3 nearest
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points to a given point (relative to de or din), and products of such sets
in Sn up to 3n nearest points to a given point (relative to De or Din).

Theorem 1. For a set C ⊆ S, the following conditions are equivalent:

a) C is connected,

b) C is geometrically convex,

c) C is de-Chebyshev,

d) C is din-Chebyshev.

Question 2. Is geometric convexity of a closed non-empty subset in Sn
(n > 1) equivalent to being De-Chebyshev or Din-Chebyshev?

For a product of n closed non-empty subsets of S, being De-Cheby-
shev or Din-Chebyshev is equivalent to being connected.
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Introduction

Tropical geometry blends metric geometry with combinatorics. The
topic of this talk is the family of alcoved polyhedra: a rich, very well–
behaved and beautiful class of convex 3–dimensional bodies. They
have facet equations only of two types: xi = cnst and xi − xj =
cnst. Three consequences follow. First, the f–vector and the the facet
sequence are restricted (combinatorial restrictions). Second, the facet
angles and the dihedral angles are restricted (Euclidean restrictions).
Third, the constant terms of the facet equations can be assembled
into a matrix (algebraization via tropical–multiplicatively idempotent
normal matrices).

In this talk, we classify alcoved polyhedra from a topological, affine
and Euclidean point of view, i.e., we transform them by small perturba-
tions, affine maps and space symmetries. Here is what we do. First, we
declare all boxes to be equivalent (disregarding length). Having done
so, we are left with the classification of alcoved polyhedra having a
common bounding box. Say this common bounding box is Q, the unit
cube centered at the origin. Two alcoved polyhedra P and P ′ whose
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bounding box is Q are equivalent for us, in two cases: if there exists
a symmetry of Q taking P bijectively onto P ′ or if P ′ is a sufficiently
small perturbation of P (or a combination of both). Finally, when we
want to compare two arbitrary alcoved polyhedra P and P ′, first we
transform their bounding boxes B and B′ into Q by bijective affine
maps f and f ′. If f(P) and f ′(P ′) are equivalent, as described above,
then we define the original P and P ′ to be equivalent. It is an angle–
preserving equivalence relation between maximal alcoved polyhedra.
For this new notion, we have coined the expression quasi–Euclidean
equivalence.

Maximality is considered wrt the f–vector, i.e., maximal alcoved
polyhedra are dodecahedra having 20 vertices and 30 edges.

Main results

We prove the following theorem:
The quasi–Euclidean classification in the family of maximal alcoved

dodecahedra in R3 has eight classes.
The proof is reached after the following steps. In each alcoved poly-

hedron P , two distinguished vertices are called North and South Poles,
and marked N and S. After an idea of Kepler’s, the polyhedron P is
the union of three parts: North Cask, South Cask and Equatorial Belt.
Each Polar Cask has a Cask type. Cask types are described by a vector
and a chirality word. In the maximal case, the vector is (p.q.r), with
p, q, r ∈ {4, 5, 6} and p + q + r = 15. The chirality word is either left
or right. In the maximal case, we show that both the Equatorial Belt
and the quasi–Euclidean class are determined only by the North and
South Cask types. The Cask types are determined only by the signs of
six 2–minors of the normal idempotent matrix A representing P i.e.,
P = P(A). Ultimately, the Cask types are determined by the signs of
a 6–tuple, called difference tuple, which is computed from the pertur-
bation matrix E of A. The matrix B = A + E provides the bounding
box, i.e., the bounding box of P(A) is P(B).
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Introduction

Recently, Marcus, Spielman and Srivastava [2], [1], following their solu-
tion of the Kadison-Singer problem [3], came to study certain convolu-
tions of polynomials. They established a strong link to free probability
by showing that these convolutions capture the expected characteris-
tic polynomials of random matrices. In addition, these convolutions
preserve the property of the roots being real numbers.

We explore analogues of these types of convolution polynomials in
the setting of max-plus algebra, where the max-permanent replaces the
determinant and the maximum is the analogue of the expected value.

Basic properties

The basic max-plus structures and notions we use are (in brackets their
analogues in the standard setting): max convolution (additive con-
volution), Hadamard product (multiplicative convolution), maximum
(expectation), permutation max-plus matrices (orthogonal matrices),
principally-dominant matrices (diagonizable matrices), full character-
istic maxpolynomial (characteristic polynomial).
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Main results

We obtain formulas that are similar to those of [2] for the convolution
of characteristic maxpolynomials. However, whereas in the standard
setting only bounds on the maximal roots are known, here we get
a simple description of all the roots of the convolution maxpolynomial
in terms of the roots of the involved maxpolynomials p and q of degree
n: the maximal n roots among those of p and q (in max convolution)
and the product (sum in standard arithmetic) of the ordered lists of the
roots of p and q (in the Hadamard (multiplicative) convolution). The
preservation of the real-rootedness is translated here to maxpolynomi-
als in full canonical form (FCF) and we show that the full characteristic
maxpolynomial is in FCF.
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Introduction

As part of an ongoing project to present an axiomatic algebraic theory
which unifies and “explains” aspects of tropical algebra, hyperfields,
and fuzzy rings by embedding T in a larger set A endowed with more
structure, we consider the affine geometric aspects and relate them
to Lorscheid’s semigroup semialgebra. We also have results on linear
algebra, done jointly with Akian and Gaubert.

Basic properties

The keys to this theory are a general “negation map,” as well as a “sur-
passing relation” which generalizes equality; together with A and T
these are called a “system,” which provides a framework for analogs of
theorems from classical algebra.

The set of prime congruences on A provides a Zariski topology,
which can be used as the foundation for affine geometry.

Main results

Our main results concern basic invariants of geometry, as well as con-
ditions guaranteeing the equality of matrix rank and row rank (as well
as counterexamples).
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Introduction

In cryptography, Stickel’s protocol is used for generating a secret key
shared between Alice and Bob. Grigoriev and Shpilrain [1] suggested
a tropical implementation of this protocol by means of tropical matrix
polynomials. In response, Kotov and Ushakov [3] suggested an attack
on this new implementation. Their attack works well, however only
for small maximal degrees of tropical matrix polynomials. Our idea is
to develop new protocols that will be similar to Stickel’s protocol, by
means of the recently found classes of tropical commuting matrices.

Main results

Jones [2] considered square matrices over Rmax that satisfy the relation

aij ⊗ ajk ≤ aik ⊗ ajj. If one defines A(α) = (a
(α)
ij )ni,j=1 by

a
(α)
ij = aij ⊗ (aii ⊕ ajj)

α−1,

then such matrices commute for any α : 0 ≤ α ≤ 1. This allows us
to use A(α) instead of matrix powers in the implementation of Grig-
oriev and Shpilrain. We then modify the Kotov-Ushakov attack for
application to this case, and we analyze how it performs.
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Developing an observation of Linde and de la Puente [4], we denote
by [2r, r]kn the set of matrices A such that aii = k for all i and k ≥ 0 and
aij ∈ [2r, r] for i 6= j. We show that A and B commute for A ∈ [2r, r]k1n
and B ∈ [2s, s]k2n , where r, s ≥ 0 and aii = k1 ≥ 0, bii = k2 ≥ 0. Using
this class of commuting matrices, we suggest the following protocol:

1. Alice and Bob agree on a public matrix W ∈ Rn×n
max ;

2. Alice chooses matrices A1 ∈ [2a, a]k1n and A2 ∈ [2b, b]k2n , and then
she sends U = A1 ⊗W ⊗ A2 to Bob.
Bob chooses matrices B1 ∈ [2c, c]l1n and B2 ∈ [2d, d]l2n , and then he
sends V = B1 ⊗W ⊗B2 to Alice.

3. Alice computes her secret key KAlice = A1⊗V ⊗A2. Bob computes
his secret key KBob = B1 ⊗ U ⊗B2. We have KAlice = KBob.

We show that the Kotov-Ushakov attack can be generalized to deal
with this protocol. We also describe some easier attacks that work
in important special cases, and discuss some other protocols that use
tropical matrix algebra.
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Introduction

Algebraic structures used in this contribution are so called (max,+)-
and (min,+)-algebras, which have appeared in the literature approx-
imately since the 60-ties of the last century (see [1]–[5] and the refer-
ences there in). In these structures the usual addition and multiplica-
tion used in the classic linear algebra are replaced either by operations
(max,+) or (min,+). The semigroup extremal operation max or min
replaces addition and opration + replaces the multiplication. The op-
erations are considered on the set of real numbers R and extended to
elements of Rn. Multiplication of matrices and vectors is extended
by analogy with the usual linear algebra taking into acount the re-
placement of the operations. In this way we can consider systems of
(max,+)- or (min,+)-linear equations and/or inequalities. Systems
with variables only on one side of the relations are called one-sided
systems, systems, in which variable occur on bothe sides are called
two-sided. The necessity to make a difference between the two types
of relations follows from the fact that the extremal operations replacing
the addition are semigroup operations, which exclude the possibility
to transfer variables from one side of the relation to the other. The
treatment of one-sided and two-sided relations therefore proved to be
substantially different.
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Notations, problem formulation

We introduce the following notations: I = {1, . . . ,m}, J = {1, . . . , n},
xT = (x1, . . . , xn), yT = (y1, . . . , yn), A o x = ((A o x)1, . . . , (A o x)m),
B o′ y = ((B o′ y)1, . . . , (B o′ y)m), where

(A o x)i = max
j∈J

(aij + xj), (B o′ y)i = min
k∈J

(bik + yk), i ∈ I

We will investigate solvability of the equation system with respect to
x, y ∈ Rn

A o x = B o′ y,

i.e. componentwise

max
j∈J

(aij + xj) = min
k∈J

(bik + yk), i ∈ I.

Besides the case of inequalities A o x ≤ B o′ y, as well as systems
with x = y and its relations to so called steady state solutions will be
briefly discussed.

Main results

Let Q = (qjk) = −AT o′ B, i.e. qjk = mini∈I(bik − aij), ∀j, k ∈ J . The
following implication can be proved:

A o x ≤ B o′ y ⇒ x ≤ x(y) ≡ Q o′ y.

Conditions under which (x, y) is a solution of equation system
A o x = B o′ y will be derived. Relations of the results to modified
systems A o x = B o′ x, A o x = B o y will be studied. Possible appli-
cation of the results to machine-time and departure-arrival scheduling
will be briefly discussed.
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This special session is devoted to veri�ed numerical computations, in particular, veri�cation meth-
ods for linear algebra, optimization, and even for ordinary di�erential equations. Since veri�ed
numerical computations enable us to rigorously solve mathematical problems by numerical meth-
ods in pure �oating-point arithmetic, they became increasingly important in a wide range of science
and engineering. The main objective of the special session is to discuss several recent topics on
veri�cation methods and related numerical analysis and matrix methods.
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Introduction

Given a matrix A ∈ Rm×n with m ≥ n and an integer k, we are looking
for a method to compute rigorous bounds for a perturbation of A such
that the perturbed matrix has at least rank deficiency k.

A natural approach uses the singular value decomposition UΣV T

of A. Let Σk denote the matrix obtained from Σ by setting the k
smallest diagonal entries to zero. Then B := UΣkV

T is a matrix with
at least rank deficiency k approximating A. Indeed, if the distance
is measured via a unitarily invariant norm, this approximation is best
possible [1].

Rigorous bounds for approximate solutions

By computing an approximate singular value decomposition A u ŨΣ̃Ṽ T

and calculating B ⊇ ŨΣ̃kṼ
T under usage of an interval floating-point

arithmetic, one derives a verified inclusion for a matrix nearby A with
at least rank deficiency k.
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A major issue of this approach is that the evaluation of ŨΣ̃kṼ
T

introduces intervals with comparably large absolute diameters. We
will show how to compute tighter inclusions using the following result.

Lemma 1. Let W ∈ Rn×k be given, abbreviate G := I − W ∗W and
assume ‖G‖2 ≤ α < 1. Then there exists ∆ ∈ Rm×n satisfying

∆ = AWW ∗ +F1 = AW (I +G)W ∗ +F2 with ‖Fν‖2 ≤
αν

√
1 − α

‖AW‖2

such that A− ∆ has at least rank deficiency k.

Verified bounds for optimal solutions

Verification methods use standard floating-point arithmetic to estimate
possible rounding errors rigorously. They are usually fast, however, due
to the use of floating-point arithmetic, their application is basically
restricted to well-posed problems [2].

Computing a tight verified inclusion of the actual best approxima-
tion B = UΣkV

T is much more difficult than the above problem; it
actually becomes ill-posed if the (n− k)-th singular value has a higher
multiplicity. The reason for the latter is that the space of correspond-
ing singular vectors is higher dimensional. For arbitrarily small ε > 0
there exists an ε-perturbation of the matrix with mutually different
singular vectors. These problem instances lie outside of the scope of
verification methods.

We present methods for the well-posed cases and discuss the sur-
prising fact that the problem to compute a tight inclusion for a per-
turbation with minimal 2-norm is always well-posed.
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Introduction

In this presentation, we consider the accuracy of a computed solution x̃
of a sparse linear system

Ax = b, (1)

where A is a real n × n matrix and b is a real n-vector. Sparse lin-
ear systems arise in scientific and engineering problems. To preserve
sparsity is important from the view of memory and computation ef-
ficiency in this problem. Rump and Ogita [1] proposed a method to
verify a lower bound of the minimum eigenvalue of A in the case where
A is symmetric and positive definite and gave rigorous error bounds
of a computed solution of a linear system. The method requires only
a Cholesky factorization of A − sI where s is a positive constant. If
the Cholesky factor of the matrix is sparse, then the method is fast.
Moreover, the method can be applied to the normal equation

ATAx = AT b (2)

of (1). However, a condition number of ATA is the square of that
of A, i.e., κ(ATA) = κ(A)2, and the Cholesky factorization of ATA
often fails when κ(A) > 108. We consider (1) and compare verification
methods with LU factorazation PAQ = LU .

MAT TRIAD 2019 (Veri�ed numerical computations)

65



We first consider a verification method based on the inequality

|A−1b− x̃| ≤ |(RA)−1| |R(b− Ax̃)|, (3)

where R is an approximate inverse of A. If R and RA are sparse, the
verification method based on (3) is fast. Second, we consider a verifi-
cation method based on the inequality

|A−1b− x̃| ≤ |
(
XU

(
XL

(
PAQ

)))−1| |XU

(
XL

(
b− Ax̃

))
|, (4)

where XL and XU are approximate inverses of L and U , respectively.
If XU , XL, and XU

(
XL

(
PAQ

))
are sparse, the verification method

based on (4) is fast. Finally, we consider a verification method based
on the inequality

|A−1b− x̃| ≤ |XU ||
((
XL

(
PAQ

))
XU

)−1| |XL(b− Ax̃)|. (5)

We will show numerical results with sparse matrices in the
SuiteSparse Matrix Collection [2], verification methods based on (3)
or (4) cannot preserve sparsity in many cases, and the verification
method based on (5) preserves sparsity in some examples. We will show
that a large problem (n ≥ 100, 000) can be verified by the verification
method based on (5) and this large problem cannot be transformed
into a block upper triangular matrix which has only small blocks by
Dulmage–Mendelsohn decomposition.
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Introduction

We study verified solutions of linear systems arising from the following
type of 3D Poisson equation

−∇ · (λ∇u) = f

with Dirichlet boundary conditions. A typical example is the steady-
state heat equation where u is the temperature, λ is the thermal con-
ductivity, and f is the heat-flux density of the source.

In numerical computations, we often discretize the equation by the
finite difference method or the finite element method. Then we obtain
a sparse linear system Ax = b, where the coefficient matrix A is ex-
pected to be monotone, i.e., all the elements of A−1 are nonnegative,
from the physical condition of the problem. To solve such linear sys-
tems, iterative solution methods such as the conjugate gradient (CG)
method and its variants are frequently used. In such cases, we usually
measure a residual norm for checking the convergence. However, we do
not know the accuracy of computed solutions. Methods of calculating
error bounds of computed solutions are so-called verification methods.
Excellent overview can be found in [3].
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In [2], a fast verification method is proposed for calculating an error
bound ε of a computed solution x̂ of a sparse linear system Ax = b
with A being monotone, satisfying

‖A−1b− x̂‖ ≤ ε.

The method is independent of iterative solvers and can be applied to
the case where A is sparse.

In this study, we adapt the verification method to high-performance
computing (HPC) environments. For this purpose, we modify several
points in terms of both the quality of the verified error bounds and
the speed of the verification process: we tighten the computed error
bounds using the approach proposed in [1] with high-precision residual
computation and speed up the verification process by reducing the
memory access.

Numerical results will be presented with some applications.
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Introduction

Electronic structure calculations, in particular the computation of the
ground state energy E0, lead to challenging problems in optimization.
These problems are of enormous importance in quantum chemistry for
the calculation of properties of N -electron molecules.

Basic properties

Minimization methods for computing E0 can be developed by em-
ploying a variational approach, where γ and Γ, the first- and second-
order reduced density matrix (RDM), define the variables. This con-
cept leads to large-scale semidefinite programming (SDP) problems,
that are constrained by N -representability conditions [1]. The result-
ing SDP problems provide a lower bound for E0. Upper bounds of E0

can be calculated for example with the Hartree-Fock method.
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Main results

With the a priori knowledge of elementwise bounds on the variables γ
and Γ it is possible to compute rigorous error bounds for the result-
ing SDP problems, which consider all rounding errors [2]. By the fol-
lowing lemma we derived in [1] such elementwise a priori bounds, that
use the well-known maximal eigenvalues λmax(γ) = 1 and λmax(Γ) = N .

Lemma 1. Let γ be the symmetric positive semidefinite 1-RDM, then

|γ(i, i′)| ≤
{

1
2λmax(γ), for i 6= i′,

λmax(γ), for i = i′.

Lemma 1 can be applied to Γ as well. With lemma 2 we derived
in [1] tighter bounds for Γ̃, the compacted form of Γ, which is actually
used in the SDP relaxations.

Lemma 2. The eigenvalues of the compacted matrix Γ̃ and Γ satisfy

λ↓(Γ̃) =
1

2
λ↓(Γ).

In our numerical results in [1] we successfully treated problem in-
stances with one hundred thousand to 20 million variables and with
thousand to thirty thousand constraints. It turned out that in al-
most all cases eight decimal digits of the optimal value were correct.
The additional effort for computing the rigorous bounds was negligible
compared with the effort for computing the approximations.
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Introduction

This talk concerns an error-free transformation for a product of three
matrices. Let F be a set of floating-point numbers defined in IEEE 754,
see [1]. For three matrices A ∈ Fm×n, B ∈ Fn×p, and C ∈ Fp×q,
we can obtain a matrix B′ ≈ B such that no rounding error occurs
in the evaluation of AB′C by adopting error-free transformation of
a matrix multiplication [3]. We apply this approach to test matrices
with specified eigenvalues.

Test matrices for eigenvalue problems

Eigenvalue problems for a matrix A ∈ Rn×n are important in linear al-
gebra. Since there is no explicit method for solving a general problem
for n ≥ 5, numerical iterative methods are employed for this problem.
If exact eigenvalues are known in advance, the information is useful in
checking accuracy and stability of numerical algorithms for the eigen-
value problems, i.e., the exact relative error can be checked. A topic
for test matrices is well summarized in Chapter 28 in [2]. Our goal is
to generate test matrices with specified eigenvalues.

MAT TRIAD 2019 (Veri�ed numerical computations)

71



We develop two functions generating a matrix A ∈ Fn×n based
on XDX−1 using a matrix D ∈ Fn×n and a non-singular matrix
X ∈ Fn×n. We produce D′ ≈ D such that XD′X−1 can be computed
without rounding errors. The feature of a function is as follows.

Input: a vector d ∈ Fn and an expected condition number c1 of X.

Output: a matrix A, X ∈ Fn×n, two vectors p, q ∈ Fn, and c2 ∈ F
for the condition number of X (c2 ≈ c1).

Here, di is an expected eigenvalue of A, and the exact eigenvalues of A
are pi + qi ≈ di. The matrix X has the exact eigenvectors of A. The
feature of another function is as follows.

Input: a matrix D ∈ Fn.

Output: a matrix A ∈ Fn×n and two vectors p, q ∈ Fn.

The role of A, p and q is the same as the previous one. A candidate of
the matrix D is an upper bi-diagonal matrix of the Jordan normal form.
Another candidate of D is a block diagonal matrix with 2-by-2 blocks,
that is used for generating a real matrix with complex eigenvalues. We
will introduce the detail of the methods and numerical examples in the
presentation.
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Abstract

Each connected component of the Gershgorin circles of a matrix con-
tains exactly as many eigenvalues as circles are involved. Thus, the
Minkowski (power set) product of all circles is an inclusion of the de-
terminant if all circles are disjoint. First, we prove that statement to
be true for real matrices even if their circles overlap.

For a real matrix, the midpoints of the Gershgorin circles are real
and the determinant is real as well. Thus the statement can be re-
duced to prove that the Minkowski product of the projections of the
Gershgorin circles on the real axis contains the determinant.

In case of complex matrices we have to investigate the Minkowski
product of complex disks. This set is known to be bounded by the
outer loop of a Cartesian oval. We first derive a parametrization of
the outer loop of a Cartesian oval without case distinction. Based on
that we prove that the determinant is included in the product of the
Gershgorin circles also for a complex matrix.

Moreover, the product of complex disks is further investigated. Let
DR, Dr, DS, Ds be complex disks with common center 1 and radii
R, r, S, s. We derive surprisingly simple necessary and sufficient con-
ditions for A := DRDr being a subset or superset of B := DSDs. For
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example, A is a subset of B if and only if the left-most real point of A
is in B, and A is a superset of B if and only if the right-most real point
of B is in A. Partially, this extends to n-fold disk products D1 · · ·Dn

for n > 2.
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Abstract. We discuss several methods to compute a verified inclusion
of the determinant of a real or complex, point or interval matrix. For
point matrices, large condition number 1015, and large dimension (n =
1000) still highly accurate inclusions are computed. For real interval
matrices we show that any vertex may be a unique extreme point.
For wide radii we show that preconditioning may widen an inclusion
significantly, and Hadamard’s bound may be much better.
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Introduction

Given a full column rank matrix A ∈ Rm×n with m ≥ n and a symmet-
ric positive definite matrix B ∈ Rm×m, we consider QR decomposition
in an oblique inner product, which computes Q ∈ Rm×n and R ∈ Rn×n

satisfying

A = QR, QTBQ = I,

where R is an upper triangular matrix and I is the identity matrix. We
introduce the CholeskyQR algorithm in an oblique inner product [1]
using MATLAB-like notations.

function [Q,R] = CholQR(A,B)

C = A′ ∗B ∗ A; % C ≈ ATBA

R = chol(C); % C ≈ RTR

Q = A/R; % Q ≈ AR−1

end

If A or B is ill-conditioned, a floating-point Cholesky decomposition
often breaks down. To solve this problem, we propose a precondition-
ing method for A. We will present numerical examples showing the
efficiency and robustness of the proposed algorithms.
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Preconditioned Cholesky QR algorithm

We propose a preconditioning method using Doolittle’s LU decompo-
sition for A such that PA = LU, where P is a permutation matrix, L
is a unit lower triangular matrix, and U is an upper triangular matrix.
The LU factors can efficiently be used for preconditioning [2].

function [Q,R] = LU CholQR(A,B)

[L,U, p] = lu(A,′ vector′); % A(p, :) ≈ LU

C = L′ ∗B(p, p) ∗ L;

R = chol(C) ∗ U ;

Q = A/R;

end

If A and B are dense matrices, CholQR(A,B) and LU CholQR(A,B)
require 2m2n + 3mn2 + 2n3/3 and 2m2n + 5mn2 floating-point oper-
ations, respectively. Therefore, if m � n, the proposed algorithms
achieves high performance as much as the original Cholesky QR al-
gorithm. Moreover, the proposed algorithm using double precision
arithmetic is applicable to the case where A and B are ill-conditioned.
Even if the condition numbers of A and B are nearly 1016, the proposed
algorithm can produce Q and R without breaking down.
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Introduction

One of the fundamental problems in interval linear algebra is to decide
for some given interval matrix if it is regular. An interval matrix is
regular if all its selections are regular.

In classical linear algebra, a natural approach in the case of sin-
gular matrix is to find a pseudoinverse matrix which is in some sense
very close to being the inverse matrix. There is not a single univer-
sal way to introduce such notion and thus there are different kinds
of pseudoinverses. One of them is the Moore-Penrose pseudoinverse
matrix.

Definition 1. For a given matrix A ∈ Rm×n, the Moore-Penrose gen-
eralized inverse is the matrix A+ ∈ Rn×m satisfying

AA+A = A,

A+AA+ = A+,

(AA+)T = AA+,

(A+A)T = A+A.
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The above definition can be generalized to interval matrices in the
following way.

Definition 2. For any interval matrix A ∈ IRm×n we define the inter-
val pseudoinverse matrix A+ ∈ IRm×n as the minimal interval matrix
so that A+ ⊃ {A+ : A ∈ A}.

Talk outline

The talk will consist of two parts. First, we will show some theoretical
properties and observations regarding interval pseudoinverse matrices.
In the second part, we will focus on how to compute an enclosure of the
interval pseudoinverse matrix for a given interval matrix. So far, there
is only one known approach to this problem – Saraev’s [2] interval ex-
tension of the standard algorithm for real matrices by Greville [1]. We
shall compare this algorithm with our approach utilizing the existing
methods for computing enclosures of eigenvalues of interval matrices.
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Introduction

Monge matrices can be defined as follows.

Definition 1. Let M ∈ Rm×n. Then M is a Monge matrix if

mij + mk` ≤ mi` + mkj

for 1 ≤ i < k ≤ m, 1 ≤ j < ` ≤ n.

Monge property proved itself useful when it comes to many opti-
mization problems [1]. The presence of Monge matrices in NP-hard
problems as the travelling salesman problem results in polynomial al-
gorithms [2]. For many other problems there are known asymptotical
speed ups as well. We generalize the Monge property for interval ma-
trices.

Interval generalization of Monge property

For interval generalization we defined two classes of interval matrices
where for the first one all matrix realizations have to be Monge and
for the other one at least one of the realizations has to be Monge.

Definition 2. An interval matrix M is a weakly Monge if ∃M ∈ M
such that M is Monge.

Definition 3. An interval matrix M is a strongly Monge if ∀M ∈ M
it holds that M is Monge.
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Our results

The condition of interval strongly Monge matrix can be reduced into
polynomially many conditions. The matrix can be also reduced into
two realisations of the matrix. There is also a correspondence be-
tween strongly Monge matrices and a class of submodular functions
on lattices. For interval weakly Monge matrices the analysis is more
challenging, however, we proved the recognition is polynomial. We also
studied closure properties of interval Monge matrices.
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Introduction

One of the main properties of matrices with interval coefficients ad-
dressed in interval linear algebra is regularity [1, 2]. An interval ma-
trix A ∈ IRn×n is said to be regular, if all real matrices A ∈ A are
non-singular, otherwise it is called singular.

Recently, the generalized property of AE regularity was proposed [3],
motivated by the AE solutions of interval linear systems based on uni-
versal and existential quantifiers associated with each coefficient of the
matrix. We consider a special case of AE regularity called strong sin-
gularity, which is the problem of checking whether each matrix A ∈ A
is singular, or whether there is at least one non-singular matrix.

Strong singularity

A finite characterization of strong singularity was given by Hlad́ık [3]
by reducing the interval problem to the finite set of matrices A ∈ A
with aij ∈ {aij, aij} for each i, j ∈ {1, . . . , n}, so-called vertex matrices.

Proposition 1. An interval matrix A is strongly singular if and only
if each vertex matrix is singular.

However, other problems, such as determining the computational
complexity or formulating a simpler characterization, remain open.
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The talk

While regularity of interval matrices is quite well-studied, strong singu-
larity still poses many questions, perhaps due to the fact that strongly
singular matrices are rather rare. Nevertheless, a better understanding
of strong singularity may contribute to the study of other more general
types of AE regularity.

In this talk, we will link strong singularity to an interesting topic
of interval linear programming, known as weak optimality, which is
the problem of checking whether the set of optimal solutions over the
scenarios of an interval program is non-empty. Furthermore, we will
address the question of characterizing strongly singular matrices and
investigate the property with respect to some special classes of interval
matrices.
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We consider the problem to compute a power of an interval matrix,
which was shown to be NP-complete even when computing powers of
degree 3 and higher [3]. We are studying various ways to handle the
computation of interval matrix powers motivated by approaches for
regularity radius problem [1, 2].

For an interval matrix A, defined as A := {A ∈ Rm×n;A ≤ A ≤ A},
we define kth power as Ak := {Ak : A ∈ A}, that is, the set of kth pow-
ers of all instances. This is not an interval matrix, so the goal is to
compute a tight interval enclosure of Ak. Recently, this problem has
been shown to be polynomially tractable for a class of mixed interval
and real valued matrices having intervals on the diagonal while leaving
remaining elements to be real [4]. Motivated by this result we explore
the problem for other specific classes of more general types aiming to
draw a borderline of tractability. Motivated by the results for the regu-
larity radius problem, one of the natural candidates is an interval tridi-
agonal matrix, which is the matrix A ∈ Rn×n having only the following
elements as non-degenerate non-zero intervals: an,n, ai,i, ai,i+1, ai+1,i for
all i = 1, . . . , n− 1.
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Introduction

We consider the linear complemetarity problem (LCP) [1], [4]

y = Az + q, y, z ≥ 0,

yTz = 0,

in which the entries of matrix A vary in given compact intervals. In
other words, A comes from an interval matrix A.

Many properties of the LCP are reflected by the properties of the
constraint matrix A. There are known many classes of matrices having
different properties with respect to LCP. In order that the problem has
desired properties for each realization of interval data, we have to check
the corresponding properties of interval matrix A.

Matrix properties

In particular, we discuss the following matrix classes (another classes
were addressed, e.g., in [2], [3]):

• Copositive matrix: xTAx ≥ 0 for each x ≥ 0. It ensures that the
complementary pivot algorithm for solving the LCP works.
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• Semimonotone matrix: The LCP has a unique solution for each
q > 0.

• Principally nondegenerate matrix: It satisfies that the LCP has
finitely many solutions for every q ∈ Rn.

• Column sufficient matrix: It satisfies that for any q ∈ Rn the
solution set of the LCP is a convex set.

• R0-matrix: It satisfies that for any q ∈ Rn the LCP has a bounded
solution set.

We characterize the interval version of the properties and also suggest
several efficiently recognizable subclasses.
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Introduction

In many applications (e.g., electrical engineering, structural mechanics
or robotics) coefficients of a linear system depend on each other. Hence
perturbation of one coefficient influences the value of the other ones.
When interval uncertainty is introduced into parameters of a linear
system (e.g., due to rounding errors or uncertainty in measurement) we
obtain a parametric interval linear system. Let us have a k-dimensional
vector of interval parameters p = [p, p] = {p ∈ Rk | p ≤ p ≤ p}.

Then a parametric interval linear system is formally defined using Ai ∈
Rm×n, bi ∈ Rm, i = 0, . . . , k as

A(p)x = b(p), p ∈ p,

where

A(p) = A0 +
k∑

i=1

Aipi, b(p) = b0 +
k∑

i=1

bipi.

A solution set of such a parametric system is defined as

Σp = {x ∈ Rn | A(p)x = b(p) for some p ∈ p}.
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Unlike in the case of plain interval linear systems a solution set does
not need to be convex in each orthant, hence it might be even more
challenging to capture its shape. Usually, such a solution set is enclosed
by an n-dimensional box. For this purpose there exist many methods
by various authors, e.g., [1], [2], [3].

However, in some cases such a description might be too crude to
tell us more about the shape of the set Σp. Here, we are going to pro-
pose another approach known from CSP solving – branch and bound
approach. For this purpose we design and discuss various contractors
both on variable space and parameter space of a parametric interval
linear system. Branch and bound methods can produce large num-
ber of boxes hence we are also going to address the issue of reducing
the number of boxes. Such methods will be applicable also to interval
nonlinear systems.
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W. Krämer and J. W. von Gudenberg, (eds), Scientific Comput-
ing, Validated Numerics, Interval Methods, pages 127–138. Kluwer,
2001.

[3] I. Skalna, Parametric Interval Algebraic Systems. Springer, 2018.

MAT TRIAD 2019 (Interval matrices)

90



MAT TRIAD 2019 (Contributed talks)

Contributed talks

91



Further results involving positive
semidefinite block matrices

Doaa Al-Saafin1 and Aliaa Burqan2

1 University of Konstanz, Department of Mathematics and Statistics, Germany
doaa-mahmoud.al-saafin@uni-konstanz.de

2 Zarqa University , Department of Mathematics and Statistics, Jordan

aliaaburqan@yahoo.com

Keywords: singular values, operator norm, numerical radius, block
matrices

Introduction

Let Mn(C) denote the space of n×n complex matrices. For Hermitian
matrices A,B ∈ Mn(C), we write A ≥ B to mean A − B is positive
semidefinite. For A ∈ Mn(C), the singular values of A denoted by
s1(A), s2(A), . . . , sn(A) are the eigenvalues of the positive semidefinite

matrix |A| = (A∗A)
1
2 enumerated as s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) and

repeated according to multiplicity. If A has real eigenvalues, then we
label them as λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

It follows by Weyl’s monotonicity principle [4], that if A,B are
Hermitian and A ≤ B, then λi(A) ≥ λj(A) for j = 1, . . . , n.

For A ∈ Mn(C), let ‖A‖ and w(A) denote the operator norm and
the numerical radius of A, respectively. It is known that w(.) defines
a vector norm on Mn(C), which is equivalent to the operator norm ‖.‖.
In fact for A ∈ Mn(C),

1

2
‖A‖ ≤ w(A) ≤ ‖A‖ (1)

and if A is normal, then w(A) = ‖A‖. Moreover, w(A) = w(A∗)
for any A ∈ Mn(C) and the norm w(.) is weakly unitarily invariant
(i.e, w(A) = w(V AV ∗) for any A ∈ Mn(C)) and any unitary matrix
V ∈ Mn(C)).
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Block matrices arise naturally in many aspects of matrix theory .

The matrix

[
A 0
0 D

]
is called the diagonal part of

[
A B
C D

]
and

[
0 B
C 0

]

is the off-diagonal part.
A singular value inequality due to Tao [2] says that if A,B,C ∈

Mn(C) are such that

[
A B
B∗ C

]
is positive semidefinite, then

sj(B) ≤ sj

([
A B
B∗ C

])
(2)

for j = 1, . . . , n.
A related inequality due to Audeh and Kittaneh [3] says that if[

A B
B∗ C

]
is positive semidefinite, then

sj(B) ≤ sj(A⊕B) (3)

for j = 1, . . . , n.
Recently, Burqan and Kittaneh [6] proved that if A,B,C ∈ Mn(C)

are such that

[
A B
B∗ C

]
is positive semidefinite, then

sj(B + B∗) ≤ sj((A + C) ⊕ (A + C)) for j = 1, . . . , n (4)

and

‖B + B∗‖ ≤ ‖A + C‖. (5)

On the other hand, Bourin et al. have proved in [5] that if A,B,C ∈
Mn(C) are such that

[
A B
B∗ C

]
is positive semidefinite, then

∥∥∥∥
[
A B
B∗ C

]∥∥∥∥ ≤ ‖A + C‖ + 2w(B)

in case of the operator norm. Several results about positive semidefinite
block matrices can be found in [4] and [7].
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The main purpose of this paper is to establish singular value in-
equalities related to the entries of block matrices. Upper bounds for
the operator norms and the numerical radii of the off-diagonal part of
block matrices are also given.

Basic properties

To establish and prove our results, we used matrix-valued inequalities
associated with positive semidefinite block matrices which can be found
in [1], [4], [8], and [9].

Main results

Theorem 1. Let A,B,C ∈ Mn(C) are such that

[
A B
B∗ C

]
is positive

semidefinite, then

(a) If A is positive definite, then sj(A
1/2BA1/2) ≤ sj(C

1/2A1/2) for
j = 1, . . . , n.

(b) If C is positive definite, then sj(C
1/2BC1/2) ≤ sj(C

1/2A1/2) for
j = 1, . . . , n.

Theorem 2. Let A,B,C ∈ Mn(C) are such that

[
A B
B∗ C

]
is positive

semidefinite, then

(a) If A is positive definite, then sj(A
−1/2B) ≤ sj(C

1/2) for j =
1, . . . , n.

(b) If C is positive definite, then sj(BC−1/2) ≤ sj(A
1/2) for j =

1, . . . , n.

In what remains, we establish new upper bounds of the operator
norm and the numerical radius of the off-diagonal parts of the positive
semidefinite block matrices.
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Theorem 3. Let A,B,C ∈ Mn(C) are such that

[
A B
B∗ C

]
is positive

semidefinite, then

‖B‖ ≤ max ‖A‖, ‖C‖.
Another upper bound for the operator norm of B in the block

matrix

[
A B
B∗ C

]
is given in the following theorem:

Theorem 4. Let A,B,C ∈ Mn(C) are such that

[
A B
B∗ C

]
is positive

semidefinite, then

‖B‖2 ≤ min

{∥∥∥∥
C + B∗AB

2

∥∥∥∥ ,
∥∥∥∥
C + BCB∗

2

∥∥∥∥
}
.

In the following theorem, we obtain a new estimate for the numer-
ical radius of the off-diagonal parts of the positive semidefinite block
matrices based on the operator norm of diagonal parts.

Theorem 5. Let A,B,C ∈ Mn(C) are such that

[
A B
B∗ C

]
is positive

semidefinite, then

w(B) ≤ 1

2
‖A + C‖ .
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Introduction

A tree is a connected acyclic graph. Let T = (V,E) be a tree. We de-
note V by {1, . . . , n} and the elements of E by (i, j). To each edge (i, j),
we assign a matrix weight Wij, a real symmetric positive definite ma-
trix of some fixed order, say, s. We now call T a weighted tree. The
distance Dij between the vertices i and j is the sum of all weights in
the shortest path connecting i and j. Define

Vij := −W−1
ij , Aij :=

{
Vij (i, j) ∈ E

0 otherwise
and Sii :=

∑

j

Vij.

Let Lij := Sii − Aij. We now define the distance and Laplacian ma-
trices of T by D := [[Dij]] and L := [[Lij]], which are symmetric
matrices of order ns. Let Is be the identity matrix of order s. Define
U := 1⊗Is, where 1 is the vector (1, . . . , 1)′ in Rn. Let δi be the degree
of the ith vertex of T . The following identity is a far reaching general-
ization of a remarkable formula of Graham and Lovász [4] obtained in
Balaji and Bapat [1].

D−1 = −1

2
L +

1

2
∆R−1∆, (1)
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where τ := (2 − δ1, . . . , 2 − δn)′, R :=
∑

i,j Wij and ∆ := τ ⊗ Is.
Equation (1) leads to

(D−1 − L)−1 =
1

3
D +

2

3
U(U ′D−1U)−1U ′.

It can be shown that U ′D−1U is a positive definite matrix. Thus every
(i, j)th block of (D−1−L)−1 is a positive definite matrix. Motivated by
this, we computed (D−1−S)−1, where S and D are Laplacian and dis-
tance matrices of two arbitrary trees with n-vertices. Surprisingly, from
all the numerical examples, we found that each block in (D−1 − S)−1

is positive definite. We shall precisely prove the following result by
computing the inertia of D−1 − S, and using interlacing property and
a nullity theorem of Fiedler and Markham [3]. This result also gener-
alizes a known result in Bapat, Kirkland and Neuman [2].

Proposition 1. Let T1 and T2 be any two trees with same number of
vertices. Let D be the distance matrix of T1 and L be the Laplacian
of T2. Then, F := (D−1 − L) = [Fij] is non-singular and each Fij is
positive definite, that is Fij + Fji is positive definite.
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Introduction

Let G = (V,E) be a directed graph. The adjacency matrix of G is

the n × n matrix A := [aij] such that aij = 1 if
−−→
(i, j) ∈ E and 0

otherwise. If for every i, the ith row sum and the ith column sum of A
are equal, then we say that G is balanced. The Laplacian matrix of G
is L := D − A, where A is the adjacency matrix of G and D is the
diagonal matrix such that every row sum and column sum of L is zero.

Resistance between two vertices

Let L† be the Moore-Penrose inverse of L. If i and j are any two
vertices of G, then the resistance between i and j is defined by

rij := l†ii + l†jj − 2l†ij. (1)

It can be seen that this definition extends the usual definition of resis-
tance distance if each edge in an undirected is replaced by two oppo-
sitely oriented edges. See [1] for basic properties of resistance distance.

MAT TRIAD 2019 (Contributed talks)

99



Main results

Proposition 1. Let rij denote the resistance between two vertices i
and j of a strongly connected balanced digraph G. Then, rij ≥ 0. In
addition, If i, j and k are any three vertices of G, then rik ≤ rij + rjk.

We then consider the resistance matrix R := [rij]. We find a new
formula to compute R−1.

Proposition 2.

R−1 = −1

2
L +

1

τ ′Rτ
(τ(τ ′ + 1′ diag(L†)M)),

where M = L− LT and τ is the n× 1 vector with ith entry given by

τi = 2 −
∑
−−→
(i,j)

rij.

Proposition 2 extends the following well-known result of Graham
and Lovász [2].

Proposition 3. Let T be a tree with V (T ) = {1, . . . , n}. Let dij be
the length of the shortest path between vertices i and j, and L be the
Laplacian of T . Set D := [dij]. Then,

D−1 = −1

2
L +

1

2(n− 1)
ττ ′,

where τ = (2 − δ1, . . . , 2 − δn)′ and δi is the degree of the vertex i.

We also prove results about sum of cofactors in R, extending similar
results in the undirected case.
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The Friendship Graphs are determined
by the eigenvalues of their

normalized Laplacian

Abraham Berman1
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The talk consists of two examples of applications of linear algebra to
graph theory. The first is the classical proof of the Friendship Theorem.
In the second we consider the graphs Fpq that are obtained by joining
a vertex to all vertices of p disjoint copies of Kq. The graphs Fp2 are
the friendship graphs. We show that the graphs Fpq are determined by
their normalized Laplacian spectrum iff q > 1 or q = 1 and p < 3, so
in particular the friendship graphs are determined by their spectrum.
This is joint work with Chen, Chen, Liang and Zhang.
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Abstract

A number of computational problems for matrix polynomials are solved
by passing to linearizations, in particular Fiedler linearizations. We
present an algorithm that finds which perturbations of the matrix co-
efficients of a polynomial correspond to a given perturbation of the
entire linearization pencil. These results should help us to solve var-
ious distance problems for matrix polynomials. For example, finding
a singular matrix polynomial, or a polynomial with a particular struc-
ture, nearby a given matrix polynomial.
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Introduction

There have been extensive studies in estimation in linear mixed models.
However, the estimation of variance components in these models is not
completely straightforward, even in the balanced case.

In this talk we will consider linear mixed models in which the ran-
dom vectors have known dispersion parameters and second order mo-
ments but the relation matrices may not commute.

The goal is to present a procedure to estimate the variance compo-
nents and the remaining estimable vectors in balanced or unbalanced
models, assuming, or not, the normality. Besides this, we show how
to construct the corresponding confidence regions and through duality,
how to test hypotheses. A numerical example is provided in order to
illustrate the theory.
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Introduction

In our presentation we will consider additive models and will show how
to use the cumulants to perform parameter estimation in such models.
We also show how to generalize the Orthogonal Block Structure class of
models, descarding the assumption of commutativity. We shall see that
when we have a pair of independent and identical distributed models,
for each treatment of a base design, we can evaluate the influence of the
effects factors, on the second, third and fourth order central moments,
as well as on the estimable functions.
We will present single and multiple additive models. In the last ones,
we will have an additive model and, using the linear structure of these
models, we will obtain homoscedastic vectors estimators which allow
us to apply ANOVA and related techniques.
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Introduction

The qd algorithm is for computing eigenvalues of tridiagonal matrices
and its recursion formula is known as the integrable discrete Toda equa-
tion. Our recent study [1], [2] shows that the time evolution of the inte-
grable ultradiscrete Toda equation computes eigenvalues of tridiagonal
matrices over min-plus algebra, where min-plus algebra is a semiring
with two binary operations: ⊕ := min and ⊗ := +. It is known that
eigenvalues over min-plus algebra coincide with the minimum value
of average weights of circuits in the corresponding digraph [3]. The
ultradiscrete hungry Toda equation





Q
(n+1)
k =

k⊗

j=1

Q
(n)
j �

k−1⊗

j=1

Q
(n+1)
j ⊕ E

(n)
k , k = 1, 2, . . . ,m,

E
(n+1)
k = Q

(n)
k+1 ⊗ E

(n)
k �Q

(n+1)
k , k = 1, 2, . . . ,m− 1,

E
(n)
0 := ∞, E

(n)
m := ∞, n = 0, 1, . . . .
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and the ultradiscrete hungry Lotka-Volterra system




U
(n+1)
k = U

(n)
k ⊗

M⊗

j=1

{(0 ⊕ ∆(n) ⊗ U
(n)
k+j) � (0 ⊕ ∆(n+1) ⊗ U

(n+1)
k−j )},

k = 1, 2, . . . ,Mm + M, Mk := (M + 1)k −M,

U
(n)
0 := ∞, U

(n)
Mm+M+1 := ∞

are generalizations of the ultradiscrete Toda equation and ultradiscrete
Lotka-Volterra system, respectively. In this talk, we show that these
integrable systems can compute eigenvalues of banded matrices over
min-plus algebra. To be more precise, eigenvalues of the intended ma-
trices are conserved quantities of the integrable systems and a variable
converges to an eigenvalue by discrete time evolution of the integrable
systems. The resulting algorithm is a min-plus analogue of a general-
ization of the qd algorithm and the dLV algorithm.
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Abstract

Bimatrix game is the game played by the two players(player I and II)
whose payoff matrices are Am×n and Bm×n respectively. In detail, If
player I(row player) choose to play by ith row and player II(column
player) by jth column, their expected payoff is aij and bij respectively.
In case players play with probability distributions x∗ on the rows and y∗

on the columns, then player I and II’s expected payoff is 〈x∗, Ay∗〉 and
〈x∗, By∗〉, respectively. If the following inequalities are true for all
probability vectors x ∈ Rm, y ∈ Rn,

v1 := 〈x∗, Ay∗〉 ≥ 〈x,Ay∗〉,
v2 := 〈x∗, By∗〉 ≥ 〈x∗, By〉.

we say (x∗, y∗) forms a equilibrium pair. Payoff v1 and v2 at the equi-
librium pair is called the value of the players I and II, respectively.
In this talk we present the generalization concepts of value and Nash
equilibrium of the bimatrix game. And we extend some of the results
of Raghavan to this general case. Also we show the equilibrium equiv-
alence with the solution of some non-linear programming problem.
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Abstract

We outline the basic properties of empirical best linear unbiased pre-
dictors (EBLUPs) and discuss some of the issues that arise in esti-
mating their prediction mean squared errors. We introduce EBLUPs
in the context of the linear mixed model with unknown covariances
and briefly describe some of their applications. We then consider their
particular application to small area estimation and outline ways to es-
timate the prediction mean squared error that have been developed in
this context.
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Motivation and summary of results

Motivated by difference schemes for solving partial differential equa-
tions approximately up to error 1/2n, we consider [2] the problem of
powering exponentially large real matrices R2n×2n 3 A 7→ A2n.
These cannot be input/output in polynomial time but

i) have fixed entries; more formally, AI,J = aM(I,J) for some poly-
nomial-time computable sequence aM ∈ R and M : N× N → N.

ii) have bounded powers ∀K : ‖AK‖ ≤ 1, i.e., do not ‘blow up’ (which
again would trivially prevent polynomial-time computability).

iii) ask for approximating, given indices I, J ∈ {0, . . . , 2n − 1} in bi-
nary, the (I, J)-th entry of A2n up to absolute error 1/2n.

Note that (ii) renders the problem trivial in the traditional integer
setting yet new in the real case. ‘Padding’ A makes it no loss of
generality to combine precision and dimension in one parameter n.

Theorem 1. a) The above matrix powering problem can be solved in
space (=memory) polynomial in n, that is, belongs to the real complex-
ity class RPSPACE [1, §7.2.1]. b) In general it cannot be solved in
time polynomial in n unless PSPACE=NP=P.
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a) follows from repeated squaring and analysis of approximation error
propagation. For b), encode the configuration graph of any polynomial-
space Turing machine as exponential-size adjacency matrix.
Difference schemes often have structure, known to improve complexity
from quadratic to near-linear in the dimension [3] but still exponential
in n. Circulant matrices of constant bandwidth arise from PDEs with
periodic boundary conditions and (i’) can be input in polynomial time.

Theorem 2. a) The 2n-th power of a given circulant matrix of band-
width two according to (i’)+(ii)+(iii) is computable in time poly(n).

a’) Coefficients of p2
n

for given linear polynomial p = a+bX of 1-norm
‖p‖ = |a|+|b| ≤ 1 can be computed in time polynomial in n.

b) For any constant bandwidth and fixed circulant matrix with poly-
nomial-time computable entries (i)+(ii)+(iii) can be computed in
the real complexity class R#P.

b’) The coefficients of p2
n

, for a given polynomial p of constant degree
with ‖p‖ ≤ 1, can be computed in the real complexity class R#P.

Regarding (a’) note that the K-the coefficient of (a + Xb)N is
(
N
K

)
·

aK ·bN−K and bounded by 1, but
(

2n

2n/2

)
itself has exponential bitlength

and thus cannot be computed in polynomial time. Problems (a) and
(a’) are actually equivalent; same for (b) and (b’).

We conjecture that (b) and (b’) can be improved to polynomial
time. In case p = (1 + bX + cX2)/(1 + b + c) with a, b, c > 0 and
b2 6= 4c, the 2n-th coefficient T2n(b, c)/(1+ b+ c)2

n

of p2
n

is polynomial-
time computable according to the following asymptotic expansion [4]:

TN(b, c) =
(b + 2

√
c)N+1/2

2 4
√
c
√
Nπ

·
(

1 +
b− 4

√
c

16N
√
c

+
(3b− 4

√
c)2

512cN 2
+ O

(
1/N 3

))
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We define the eigenvector corresponding to pseudospectrum and the
eigenvector corresponding to condition spectrum of a bounded linear
operator in a separable Hilbert space. The relation connecting approx-
imate eigenvalues, pseudo eigenvectors and condition eigenvectors are
found. The sufficient condition for a bounded linear operator in a sep-
arable Hilbert space to possess an almost invariant subset is found.
We prove the existance of common eigenvector corresponding to the
pseudospectrum and common eigenvector corresponding to the condi-
tion spectrum for various class of almost commuting bounded linear
operators in a separable Hilbert space. The results are also illustrated
with some operators.
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V. B. Kiran Kumar1

1 Department of Mathematics,
Cochin University of Science And Technology, Kerala, India

kiranbalu36@gmail.com

Börg theorem is a classical result in inverse spectral theory. It was
proved by G. Börg in 1946. It states that the periodic potential of
one dimensional Schrödinger operator is constant almost everywhere
if and only if the spectrum of the operator is connected. The connec-
tion of Börg theorem with the density of a string and other important
problems in Physics were observed later in 1960′s (Recall the popu-
lar article ”Can One hear the Shape of a Drum?” by M. Kac [6]).
The discrete version and generalization of the result were also known
since 1975 (see [1] for eg.). Such results are referred as Börg-type the-
orems. In [2], we proved the Börg-type theorem for discrete periodic
Schrödinger operators, identifying them as block Toeplitz operators.
In [4], these results were extended to much general block Toeplitz op-
erators.

Recently in [5], we considered the case when the potential is non
constant, and obtained some estimates of size of the spectral gaps.
A better lower bound is obtained in [3] very recently. An open problem
in this regard is to discover the relation between number of spectral
gaps and the essential period. Also, the pseudo-spectral version for
the non normal Schrödinger operators is another important area of
research. We wish to discuss the recent developments in this regard.
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Abstract

Block Krylov subspace methods are iterative methods for solving sys-
tems of linear equations with multiple right-hand sides. At each step,
all solutions to the system are sought in the space containing the con-
tribution of each individual right-hand side, which significantly reduces
the iteration count compared to solving the systems sequentially (one
by one). We focus on block methods for non-Hermitian systems, in par-
ticular on block GMRES. While it is known that any non-increasing
convergence curve is possible for standard GMRES with one right-hand
side and a matrix with a given spectrum [1], no analog of this result
is currently available for block methods, when multiple systems are
solved at once. Using a recent framework for studying these methods
as being a single linear system over a *-ring of complex matrices [2],
we develop convergence results for block Arnoldi and block GMRES.
In particular, we show what convergence behavior is admissible for
block GMRES and how the matrices and right-hand sides producing
such behavior can be constructed. Moreover, we show that the conver-
gence of the block Arnoldi method for eigenvalue approximation can
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be fully independent of the convergence of block GMRES for the same
coefficient matrix and the same starting vectors.
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Abstract

In this paper, we focus on determining the best approximation of a pos-
itive definite symmetric matrix by a matrix having a special structure.
In particular, we consider the Kronecker product structure with both
components unstructured, or with one component structured as com-
pound symmetry or the first-order autoregression, with the use of the
entropy loss as a measure of discrepancy. We show some properties
of the entropy loss function and we prove that in all the cases the
approximation preserves the positive definiteness property.

Presented results can be widely used in multivariate statistics, for
example for regularizing the covariance structure of a given covari-
ance matrix or in testing hypotheses about the covariance structures.
Simulation studies show that the proposed approach is reliable in the
mentioned issues.
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Introduction

Eigenvalue inclusion regions for matrices have been studied for a long
time, but inclusion regions that take into consideration spectral prop-
erties of the eigenspaces or eigenvectors seem to be somewhat less
commonly encountered. Examples of the latter can be found in [1]
and [3], where nonsimple eigenvalues are considered, and [4], which is
mainly devoted to upper bounds on the subdominant eigenvalues of
a nonnegative matrix when the dominant eigenvalue is known. Here
we investigate how a computed eigenpair can be used to improve well-
known inclusion regions for the remaining eigenvalues, and show the
relation of this process to eigenvalue deflation techniques. The results
are applied to nonnegative and real symmetric matrices and illustrated
by numerical examples.

Main results

Theorem 1. Let A ∈ Cn×n, let (µ,w) be an eigenpair for A, and let
z ∈ Cn be arbitrary. Then any eigenvalue of A that is different from µ
lies in the union

n⋃

i=1

{
λ ∈ C : |λ− aii + ziwi| ≤

n∑

j=1

j 6=i

|aji − ziwj|
}

.
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Theorem 2. Let A ∈ Cn×n, let (µ,w) be an eigenpair for A, and let
z ∈ Cn be arbitrary. Then any eigenvalue of A that is different from µ
lies in the union

n⋃

i,j=1

i<j

{λ ∈ C : |λ− aii + ziwi| |λ− ajj + zjwj|

≤
(

n∑

k=1

k 6=i

|aki − ziwk|
)(

n∑

k=1

k 6=j

|akj − zjwk|
)


.

We show how to minimize the right-hand sides of the inequalities
defining the inclusion regions, which are, in fact, Fermat-Weber prob-
lems, for symmetric and for positive matrices. The ovals of Cassini
appearing in Theorem 2 can easily be circumscribed by rectangles that
are more convenient. We illustrate our results with extensive numerical
experiments.
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Introduction

The max-plus (or tropical) algebra Rmax := R ∪ {ε}, where ε = −∞,
is a semiring with addition a ⊕ b := max{a, b} and multiplication
a ⊗ b := a + b. The max-plus eigenvalue problem is much different
from the conventional one since the eigenvalues of a matrix do not
coincide with the roots of its characteristic polynomial. In this talk,
we give a notion of “algebraic eigenvectors” so that we can characterize
all the roots. The adjective “algebraic” is taken from [1], in which the
roots of characteristic polynomial are called algebraic eigenvalues.

Basic properties

Let A ∈ Rn×n
max be a square matrix. A scalar λ ∈ Rmax and a vector

v 6= t(ε, . . . , ε) satisfying

A⊗ v = λ⊗ v

are called an eigenvalue and an eigenvector of A, respectively. The
characteristic polynomial of A is defined by

ϕA(t) := det(A⊕ t⊗ E) =
⊕

σ∈Sn

n⊗

i=1

(A⊕ t⊗ E)iσ(i),
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where E is the identity matrix and (B)ij means the (i, j) entry of
matrix B. We can factorize ϕA(t) into the product of linear forms:

ϕA(t) = (t⊕ λ1)
⊗p1 ⊗ (t⊕ λ2)

⊗p2 ⊗ · · · ⊗ (t⊕ λm)⊗pm.

We call λ1, λ2, . . . , λm the roots of ϕA(t). It is known that the maximum
root coincides with the maximum eigenvalue of A, whereas other roots
may not be eigenvalues [1].

Main results

For A = (aij) ∈ Rn×n
max , assume that each term of ϕA(t) is attained

with exactly one permutation. Then we show that λ ∈ Rmax is a root
of ϕA(t) if and only if there exist a set J ⊂ {1, 2, . . . , n} of indices,
a permutation π on J and a vector v 6= t(ε, . . . , ε) satisfying

(A\π ⊕ EJ) ⊗ v = (Aπ ⊕ E\J) ⊗ v.

Here,

(Aπ)ij =

{
aij if i ∈ J, j = π(i),

ε otherwise,
(A\π)ij =

{
ε if i ∈ J, j = π(i),

aij otherwise,

(EJ)ij =

{
0 if i = j ∈ J,

ε otherwise,
and (E\J)ij =

{
0 if i = j 6∈ J,

ε otherwise.

We call such vector v an algebraic eigenvector of A with respect to λ.
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Introduction

To determine the evolution of a Markov chain, the calculation of ma-
trixpowers is essential. For the computation of matrixpowers of transi-
tion matrices, there is an important difference between diagonalizable
and non-diagonalizable matrices. Under certain conditions[1], the evo-
lution of both kinds of matrices is considered. This will be done by
considering a suitable perturbation on the non-diagonalizable transi-
tion matrix, which preserves certain spectral properties.

Main results

Starting from a non-diagonalizable transition matrix A, we perform
a suitable perturbation, such the perturbation preserves certain spec-
tral properties. The preservation of spectral properties is expressed
as conditions on the perturbation matrix. For a suitable perturbed

matrix Ã, we find an upper bound for
∥∥∥Ãk − Ak

∥∥∥. The convergence is

studied and if the conditions are satisfied, the rate of convergence is

found to be exponential, for k large. The behaviour of
∥∥∥Ãk − Ak

∥∥∥ for

small k, is also considered and explained. Furthermore, other conse-
quences of the upper bound on Markov chains are derived.
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1 Charles University, Faculty of Mathematics and Physics,
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Introduction

Let us consider a linear approximation problem Ax ≈ b, b 6∈ range(A).
It is well known that the related total least squares (TLS) minimization

min ‖[g, E]‖F such that (b + g) ∈ range(A + E)

may not have a solution for the given (A, b). Paige and Strakoš [3] ex-
plained this phenomenon through the so-called core problem concept.
They introduce an orthogonal trasnformation

(P TAQ)(QTx) ≡
[
A11 0
0 A22

] [
x1
x2

]
≈
[
b1
0

]
≡ (P T b)

that extracts from the original data a minimally dimensioned subprob-
lem A11x1 ≈ b1 called the core problem. Among other properties, it
always has the TLS solution that can be transformed back to the orig-
nal problem Ax ≈ b. In this way, it justifies, e.g., the nongeneric
approach of Van Huffel and Vandewalle [4].
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The matrix right-hand side case and beyond

The matrix right-hand side variant of the TLS minimization (see [4]),
i.e., for AX ≈ B, where B ∈ Rm×d, motivated a generalization of the
core problem. However, the matrix variant of core problem still may
not have a TLS solution which raises a natural question: “Why?”

In order to better understand the matrix case we show how to
extend the concepts into

(i) tensor right-hand side problems A×1 X ≈ B [1], and to

(ii) problems with generalized models, in particular ALXAR ≈ B [2],

to see the matrix case in a wider context.
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We consider the gradient neural network model for solving the ma-
trix equation AXB = D in real time. It is shown that the model
is globally convergent to the general solution of the matrix equation,
which can be determined by the choice of the initial matrix. Several ap-
plications on computing the matrix generalized inverses are also shown.
The model is extended to the case when the gain parameter is func-
tion of time variable. All results are illustrated on different numerical
examples.
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network with nonlinear activation for computing inner inverses and
the Drazin inverse, Neural Process. Let. 48:109–133,2018.

MAT TRIAD 2019 (Contributed talks)

130
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Introduction

Let A(t) be a time-dependent matrix with t in an interval I. The time-
ordered exponential of A(t) is defined as the unique solution U(t) of
the system of coupled linear differential equations

A(t)U(t) =
d

dt
U(t),

with initial condition U(0) = I. When A commutes with itself at all
times, i.e., A(t)A(t′)−A(t′)A(t) = 0 for every t, t′ ∈ I, then the ordered
exponential is simply given by a matrix exponential as

U(t) = exp

(∫ t

0

A(τ) dτ

)
.

In the general case, however, when A does not commute with itself at
all times, the ordered exponential has no known explicit form in terms
of A.
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The problem of evaluating U(t) is a central question in the field
of system dynamics, in particular in quantum physics where A is the
quantum Hamiltonian. Until now, few methods have been proposed to
approximate the ordered exponential, but a satisfactory answer to this
problem is still missing. In [1], Giscard et al. proposed a method to ob-
tain ordered exponentials using graph theory and necessitating only the
entries A(t) to be bounded functions of time. While this approach pro-
vides exact solutions and is convergent, it suffers from a computational
drawback. We will introduce a model-reduction strategy that solves
such computational issue by a Lanczos-like algorithm, giving a converg-
ing and computable (in term of complexity) strategy for getting U(t).
Such a technique is derived by extending to the time-depending set-
tings the well-known connections between the Lanczos algorithm, the
moment problem, graph approximations, and continued fractions.

Main results

Let us define the convolution-like ∗ product between A1(t
′, t) and A2(t

′, t)
as

(
A2 ∗ A1

)
(t′, t) :=

∫ t′

t

A2(t
′, τ)A1(τ, t) dτ.

In the spirit of existing Lanczos approaches for approximating matrix
functions, given a time-dependent matrix A(t′, t), we construct a ma-
trix Tn of size n with a simpler (tridiagonal) structure and so that

(A∗j)k,` = (T∗j
n )1,1, for j = 0, . . . , 2n− 1.

Then the solution can be expressed by the techniques in [1].
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Introduction

In this talk our focus lies in the linear statistical model y = Xb + e,
denoted as M = {y,Xb, V }, supplemented with the new unobservable
random vector y∗, coming from y∗ = X∗b + e∗. A linear statistic Fy
is called linearly sufficient for estimable X∗b if there exists a matrix A
such that AFy is the best linear unbiased estimator, BLUE, for X∗b.
In matrix terms, this means that there exists a matrix A such that the
equation

AF (X∗ : V X⊥) = (X∗ : 0)

is satisfied. The concept of linear sufficiency with respect to a pre-
dictable random vector is defined in the corresponding way but con-
sidering the best linear unbiased predictor, BLUP, instead of BLUE.
In this talk, we consider the linear sufficiency of Fy with respect
to y∗, X∗b, and e∗. For some old and recent references in this area,
see the References.

Main results

There is a strong connection between the linear sufficiency concept and
certain properties of the transformed model T = {Fy, FXb, FV F ′}.
We will introduce necessary and sufficient conditions for the equality
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of the multipliers of y providing BLUEs and BLUPs in the original
model M and in the transformed model T .
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Introduction

Consider a graph G on n vertices and let A be its adjacency matrix
with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Here we investigate the partial
sum Sk(G) =

∑k
i=1 λi for 1 ≤ k ≤ n. This parameter concerns theo-

retical chemistry in the Hückel molecular orbital theory. In this theory
the behavior of the so-called π-electrons in an unsaturated conjugated
molecule is described. If the carbon-atom skeleton of the underlying
conjugated molecule is represented as a graph, then each eigenvalue
of the adjacency matrix determines the energy level of a π-electron,
and the sum Sk determines the total energy of these electrons. Fur-
thermore, the corresponding eigenvector describes how the π-electron
moves within the molecule, i.e., the molecular orbital.

Ivan Gutman introduced the the energy of a graph E(G) =
∑n

i=1 |λi|
which relates to Sk by E(G) = 2 max1≤k≤n Sk. Since then the energy
of a graph has been intensively investigated. For a survey and bounds
on the energy see [3], [5], the papers [2], [6] for recent developments on
the energy, and [1], [4] for bounds on Sk. Here, we present new bounds
for the partial sum of the eigenvalues of random graphs.

Bounds for random graphs

Let {Gn} be a sequence of graphs drawn from the Erdős–Rényi random
graph model distribution G(n, 1/2). We say that a property holds for
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almost all graphs if the property holds for Gn with probability tending
to 1 as n → ∞.

Theorem 1. For almost all graphs it holds sk(G) ≤ e(G)+k2

(0.99n)
1/2 .

Let s(t, G) be the sum of the adjacency eigenvalues of G larger or
equal than t

√
n.

Theorem 2. For almost all graphs it holds

s(t, G) ≤ 2

3π
n3/2

(
e(G)(

n
2

) +

(
1 − t2

)3

2
+ O(1)

)
.

Acknowledgement

Institutional support RVO:67985807. Rocha was supported by the
Czech Science Foundation, grant number GA19-08740S.

References

[1] K. C. Das, S. A. Mojallal, S. Sun, On the sum of the k largest eigen-
values of graphs and maximal energy of bipartite graphs, Linear
Algebra Appl. 569:175–194, 2019.

[2] D. P. Jacobs, V. Trevisan, F. Tura, Eigenvalues and energy in
threshold graphs, Linear Algebra Appl. 465:412–425, 2015.

[3] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.

[4] B. Mohar, On the sum of k largest eigenvalues of graphs and sym-
metric matrices, J. Combin. Theory Ser. B 99:306–313, 2009.

[5] V. Nikiforov, Beyond graph energy: norms of graphs and matrices.
Linear Algebra Appl. 506:82–138, 2016.
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We consider the indefinite inner product [·, ·] : C2n × C2n → C
defined by

[x, y] := xHJ2ny, where J2n =

[
0 In

−In 0

]
, (1)

and matrices A ∈ C2n×2n that posses special structure related to the
above inner product. We give necessary and sufficient conditions for
such matrices to admit a structure-preserving diagonalization and dis-
cuss further implications. These results are based on [1, Sec. 9-10].

The adjoint A? of a matrix A ∈ C2n×2n with respect to the inner
product (1) is the uniquely defined matrix that satisfies

[Au, v] = [u,A?v] and [u,Av] = [A?u, v]

for all u, v ∈ C2n. It can be explicitly expressed as A? = JT
2nA

HJ2n and
induces several important classes of matrices: a matrix S ∈ C2n×2n

for which it holds that S? = S−1 is called symplectic. Moreover, a
matrix B ∈ C2n×2n is called skew-Hamiltonian whenever B? = B and
Hamiltonian if B? = −B. All three types of matrices belong to the
class of J2n-normal matrices which are defined through the relation
AA? = A?A. Whenever some A ∈ C2n×2n is diagonalizable via a simi-
larity transformation S−1AS = S?AS where S ∈ C2n×2n is symplectic,
it is easily checked that A must be J2n-normal. However:
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Not every J2n-normal matrix is diagonalizable and can be
diagonalized by a symplectic similarity transformation.

Starting from the question what conditions need to be imposed
on a J2n-normal matrix A ∈ C2n×2n to be symplectic diagonalizable,
we present and discuss the following results through the example of
Hamiltonian matrices:

• A (diagonalizable) Hamiltonian matrix A ∈ C2n×2n is symplectic
diagonalizable if and only if the following holds: Given any ba-
sis v1, . . . , vk ⊂ C2n of the eigenspace for any purely imaginary
eigenvalue λ of A, the matrix

V HJ2nV, V =
[
v1 · · · vk

]
∈ C2n×k

has equally many positive and negative imaginary eigenvalues.

• A Hamiltonian matrix A ∈ C2n×2n with a complete set of orthog-
onal eigenvectors is symplectic diagonalizable if and only if it is
diagonalizable by a unitary and symplectic matrix.

• The unitary and symplectic diagonalizability of a Hamiltonian ma-
trix A ∈ C2n×2n is equivalent to the existence of a decomposition

A = N −N ?

where N ∈ C2n×2n satisfies NN? = N ?N = 0. In this decompo-
sition, span(N) is invariant for A and uHJ2nv = 0 holds for any
u, v ∈ span(N) (i.e. span(N) is isotropic).
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Introduction

With each simple graph G we may associate several matrices. Some
common examples are the adjacency matrix, the Laplacian, the signless
Laplacian, and the distance matrix. If X is such a matrix type, we say
a graph is X-determined if every graph which is X-cospectral with G
is isomorphic to G. For example, it is known that complete multipar-
tite graphs are distance-determined, but not adjacency-determined,
see [2], [3]. Two surveys on adjacency-cospectral graphs are [4], [5].

The Seidel matrix of G is S(G) = J − I − 2A(G), where A(G)
is the adjacency matrix of G, I the identity matrix and J is the all-
ones matrix. No graph on n ≥ 2 vertices is Seidel-determined, since
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any graph obtained from G by Seidel switching (see below) has the
same Seidel spectrum. We consider G to be determined by its Seidel
spectrum, up to switching, if any graph with the same spectrum is
switching equivalent to a graph isomorphic to G. We consider here
complete k-partite graphs: which of these graphs are Seidel-determined
up to switching?

Basic properties

For a graph G = (V (G), E(G)) the Seidel matrix S(G) is a symmetric
matrix with zero diagonal and all other entries in {1,−1}. If U,W ⊆
V (G) form a partition of V (G), a Seidel switching with respect to U
transforms G to a graph H by deleting the edges between U and W and
adding an edge between vertices u ∈ U and w ∈ W if (u,w) /∈ E(G).
Seidel switching is an equivalence relation and we say that G and H
are switching equivalent. If H is obtained from G by Seidel switching,
then S(H) = ΛS(G)Λ, where Λ is a signature matrix (a diagonal
matrix with ±1 diagonal entries — here 1’s correspond to vertices
of U and −1’s to vertices of W ). Hence S(H) and S(G) are similar
and have the same spectrum, though the graphs G and H are generally
not isomorphic. We say that a graph G is Seidel determined, up to
switching, (or, in short, S-determined) if the only graphs with same
Seidel spectrum are switching equivalent to a graph isomorphic to G.

Main results

We show that any graph which has the same spectrum as a complete
k-partite graph is switching equivalent to a complete k-partite graph,
and if the different partition sets sizes are p1, . . . , pl, and there are at
least three partition sets of each size pi, i = 1, . . . , l, then the complete
multi-partite graph is S-determined. Sufficient conditions for a com-
plete tripartite graph to be S-determined are discussed. The results
appear in [1].
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pecko@pmf.ni.ac.rs

Keywords: Zhang neural network, generalized inverses, time-varying
matrix

Abstract

We investigate various applications of dynamical systems in matrix
computations. The dynamical system approach is a powerful tool for
solving many kinds of matrix algebra problems because of its par-
allel nature, possibility to provide output within a predefined time in
real-time applications, convenience of hardware implementation, global
convergence without any condition, applicability to online computation
with time-varying matrices.

The ZNN design is defined upon the usage of an appropriate matrix-
valued error-monitoring Zhang function (Zf shortly), denoted by E(t).
The original ZNN design arising from the Zf E(t) is defined as the
dynamical system

Ė(t) :=
dE(t)

dt
= −γH(E(t)). (1)

In (1), Ė(t) denotes the time derivative of E(t), γ ∈ R, γ > 0 is the
scaling parameter, and H(·) : Cn×m 7→ Cn×m denotes a complex-valued
elementwise applicable matrix-to-matrix activation function.

New stream in the research of zeroing neural design is the varying-
parameter ZNN (VPZNN) design, defined by

Ė(t) = −γ(t)H(E(t)), (2)
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Essentially, the VPZNN design uses relatively small, time-varying val-
ues γ(t) instead of “as large as possible” constant values γ.

We investigate the VPZNN design (2) arising from the Zf defined
in [2], [3]

EF,G(t) = (G(t)A(t) + λI)X(t) − F (t), (3)

where A(t) ∈ Cm×n
r is a given m×n time-varying matrix of a constant

rank r, F (t) ∈ Cn×m be an arbitrary n×m matrix and G(t) ∈ Cn×m
s is

a selected n×m matrix of a constant rank 0 < s ≤ r. The Zf proposed
in [1] can be obtained in the particular case F (t) ≡ G(t).

Also, the following integration-enhanced noise-tolerant VPZNN mo-
del, called IENTV PZNN(A,F,G), will be be considered:

ĖF,G(t) = −γ(t)EF,G(t) − ζ

∫ t

0

EF,G(τ)dτ + N(t), (4)

where N(t) is the noise in a matrix form.
In addition, a new design formula for EF,G(t) is proposed:

dEF,G(t)

dt
= −γ(t)H

(
k1EF,G(t) + k2EF,G

q/p(t)
)
, (5)

where k1, k2 > 0 and p, q denote positive odd integers satisfying p > q.
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1 Charles University, Faculty of Mathematics and Physics,
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Introduction

Numerical radius r(A) is the radius of the smallest ball with the center
at zero containing the field of values W (A) of a given square matrix A.
It is well-known that

r(A) ≤ ‖A‖ ≤ 2r(A) ,

where ‖ · ‖ denotes the matrix 2-norm. Matrices attaining the lower
bound are called radial, and have been analyzed thoroughly. In this
presentation we investigate matrices satisfying r(A) = ‖A‖/2, and call
them half-radial. We summarize the existing results and formulate new
ones. In particular, we investigate their singular value decomposition
and algebraic structure. Based on that, we study the extreme case of
the attainable constant 2 in Crouzeix’s conjecture.

Necessary and sufficient conditions

We will present several necessary and sufficient conditions for a ma-
trix A to be half-radial; for more details see [3, Theorem 9]. Half-radial
matrices are closely related to the 2 × 2 Jordan block with the zero
eigenvalue. Their field of values is always a disk with the radius ‖A‖/2,
centered at the origin. A half-radial matrix A has orthogonal maxi-
mum right and left singular subspaces; see [3, Lemma 6].
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Half-radial matrices and Crouzeix’s conjecture

Crouzeix’s conjecture [2] states that

‖p(A)‖ ≤ 2 max
ζ∈W (A)

|p(ζ)|

holds for any square matrix A and any polynomial p.
In [4, p. 239], Greenbaum and Overton conjectured that if the

equality holds in the above inequality for A ∈ C(n+1)×(n+1) and the
polynomial p(ζ) = ζn, then A is unitarily similar to a scalar multiple
of the (n + 1) × (n + 1) Crabb-Choi-Crouzeix matrix. Using results
of Crabb [1] we show that their conjecture is true. We then generalize
this result and present the structure of matrices satisfying for some
1 ≤ k ≤ n the equality

‖Ak‖ = 2 max
ζ∈W (A)

|ζk| .
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Even though in most problems involving matrix inverse the nu-
merical computation of the actual inverse is usually not necessary (as
the problem may be reformulated to solve a corresponding system of
linear equations or a corresponding matrix equation), there seems to
exist no computational system or numerical library which would miss
a subroutine for numerical computation of the matrix inverse.

When using such a subroutine one could expect to obtain the
most accurate result possible. Unfortunately, all numerical algorithms
(known to the authors) for computing the matrix inverse suffer a curse
that the larger of the residual errors, ‖AX − I‖ and ‖XA− I‖ (X de-
notes the computed inverse of a matrix A), can, in a pessimistic case,
grow as fast as cond2(A), where cond(A) is the condition number of A
(we assume that A is not a triangular matrix).

In our presentation, we present the algorithm for inverting general
tridiagonal matrices that overcomes the above curse, i.e. it computes
the inverse for which both residual errors grow linearly with cond(A).
In addition, the proposed algorithm has the smallest possible asymp-
totic complexity for the considered problem.
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The proposed method is based on a careful selection of formulas
for the elements of A−1 resulting from equations AX = I = XA. We
will explain why not every choice of relations preserves all recursive
properties and we will show how to choose the formulas in order to
obtain an algorithm for which both residual errors are small.

Extensive numerical tests confirm very good numerical properties
of this algorithm.
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